These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6736965)

  • 1. Monitoring the stimulated release of dopamine with in vivo voltammetry. I: Characterization of the response observed in the caudate nucleus of the rat.
    Kuhr WG; Ewing AG; Caudill WL; Wightman RM
    J Neurochem; 1984 Aug; 43(2):560-9. PubMed ID: 6736965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo comparison of the regulation of releasable dopamine in the caudate nucleus and the nucleus accumbens of the rat brain.
    Kuhr WG; Bigelow JC; Wightman RM
    J Neurosci; 1986 Apr; 6(4):974-82. PubMed ID: 3486259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the stimulated release of dopamine with in vivo voltammetry. II: Clearance of released dopamine from extracellular fluid.
    Ewing AG; Wightman RM
    J Neurochem; 1984 Aug; 43(2):570-7. PubMed ID: 6736966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct in vivo monitoring of dopamine released from two striatal compartments in the rat.
    Ewing AG; Bigelow JC; Wightman RM
    Science; 1983 Jul; 221(4606):169-71. PubMed ID: 6857277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo release of endogenous dopamine, 5-hydroxytryptamine and some of their metabolites from rat caudate nucleus by phenylethylamine.
    Bailey BA; Philips SR; Boulton AA
    Neurochem Res; 1987 Feb; 12(2):173-8. PubMed ID: 2437473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thalamic control of dopaminergic functions in the caudate-putamen of the rat--I. The influence of electrical stimulation of the parafascicular nucleus on dopamine utilization.
    Kilpatrick IC; Phillipson OT
    Neuroscience; 1986 Nov; 19(3):965-78. PubMed ID: 3796823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle.
    Millar J; Stamford JA; Kruk ZL; Wightman RM
    Eur J Pharmacol; 1985 Mar; 109(3):341-8. PubMed ID: 3872803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evoked neuronal activity accompanied by transmitter release increases oxygen concentration in rat striatum in vivo but not in vitro.
    Zimmerman JB; Kennedy RT; Wightman RM
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):629-37. PubMed ID: 1618942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of D-2 antagonists on frequency-dependent stimulated dopamine overflow in nucleus accumbens and caudate-putamen.
    May LJ; Wightman RM
    J Neurochem; 1989 Sep; 53(3):898-906. PubMed ID: 2527290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo voltammetry with electrodes that discriminate between dopamine and ascorbate.
    Ewing AG; Wightman RM; Dayton MA
    Brain Res; 1982 Oct; 249(2):361-70. PubMed ID: 6814706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals.
    el Ganouni S; Forni C; Nieoullon A
    Brain Res; 1987 Feb; 404(1-2):239-56. PubMed ID: 3494483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain anoxia releases striatal dopamine in rats.
    Phebus LA; Perry KW; Clemens JA; Fuller RW
    Life Sci; 1986 Jun; 38(26):2447-53. PubMed ID: 3523094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion and uptake of dopamine in rat caudate and nucleus accumbens compared using fast cyclic voltammetry.
    Stamford JA; Kruk ZL; Palij P; Millar J
    Brain Res; 1988 May; 448(2):381-5. PubMed ID: 3378163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release to the cerebral ventricles of substances with possible transmitter function in the caudate nucleus.
    Portig PJ; Vogt M
    J Physiol; 1969 Oct; 204(3):687-715. PubMed ID: 4309959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of striatal dopamine metabolism by the activity of dorsal raphe serotonergic afferences.
    De Simoni MG; Dal Toso G; Fodritto F; Sokola A; Algeri S
    Brain Res; 1987 May; 411(1):81-8. PubMed ID: 2440514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat.
    de Jong W; Linthorst AC; Versteeg HG
    Arch Mal Coeur Vaiss; 1995 Aug; 88(8):1193-6. PubMed ID: 8572872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of neurotransmitter release into the caudate nucleus during convulsions induced by pentylenetetrazole using in vivo differential pulse voltammetry.
    Yokoi I; Yamamoto M; Fujikawa N; Shirasu A; Mori A
    Brain Res; 1986 Oct; 385(2):212-8. PubMed ID: 2430666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of stimulated dopamine overflow within rat striatum as observed with in vivo voltammetry.
    May LJ; Wightman RM
    Brain Res; 1989 May; 487(2):311-20. PubMed ID: 2786444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal rats trained to circle show asymmetric caudate dopamine release.
    Yamamoto BK; Lane RF; Freed CR
    Life Sci; 1982 Jun; 30(25):2155-62. PubMed ID: 7109843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of dopamine overflow and uptake processes in the extracellular fluid of the rat caudate nucleus with fast-scan in vivo voltammetry.
    May LJ; Kuhr WG; Wightman RM
    J Neurochem; 1988 Oct; 51(4):1060-9. PubMed ID: 2971098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.