BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6737030)

  • 1. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonic and phasic synaptic input to spinal cord motoneurons during fictive locomotion in frog embryos.
    Soffe SR; Roberts A
    J Neurophysiol; 1982 Dec; 48(6):1279-88. PubMed ID: 6296327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord.
    Soffe SR
    J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos.
    Roberts A; Sillar KT
    Eur J Neurosci; 1990; 2(12):1051-1062. PubMed ID: 12106066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    BirĂ³ Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord.
    Dale N
    J Physiol; 1985 Jun; 363():61-70. PubMed ID: 4020706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos.
    Roberts A; Dale N; Evoy WH; Soffe SR
    J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of myotomal motoneurons during fictive swimming in frog embryos.
    Soffe SR; Roberts A
    J Neurophysiol; 1982 Dec; 48(6):1274-8. PubMed ID: 7153794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation.
    Buchanan JT; Cohen AH
    J Neurophysiol; 1982 May; 47(5):948-60. PubMed ID: 7086476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: synaptic interactions and morphology.
    Buchanan JT
    J Neurophysiol; 1982 May; 47(5):961-75. PubMed ID: 6177842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular recordings from spinal neurons during 'swimming' in paralysed amphibian embryos.
    Roberts A; Khan JA
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):213-28. PubMed ID: 17506219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-dependent Modulation of a Cutaneous Sensory Pathway by Glycinergic Inhibition from the Locomotor Rhythm Generator in Xenopus Embryos.
    Sillar KT; Roberts A
    Eur J Neurosci; 1992 Oct; 4(11):1022-1034. PubMed ID: 12106408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles.
    Soffe SR; Zhao FY; Roberts A
    Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamprey spinal interneurons and their roles in swimming activity.
    Buchanan JT
    Brain Behav Evol; 1996; 48(5):287-96. PubMed ID: 8932869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional properties of reticulospinal neurons in the early-swimming stage Xenopus embryo.
    van Mier P; ten Donkelaar HJ
    J Neurosci; 1989 Jan; 9(1):25-37. PubMed ID: 2913206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord.
    Buchanan JT
    J Neurophysiol; 1999 May; 81(5):2037-45. PubMed ID: 10322045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.