These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 6737030)

  • 21. The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos.
    Sillar KT; Roberts A
    J Neurosci; 1992 May; 12(5):1647-57. PubMed ID: 1578259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion.
    Pratt CA; Jordan LM
    J Neurophysiol; 1987 Jan; 57(1):56-71. PubMed ID: 3559681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neuronal network for locomotion in the lamprey spinal cord: evidence for the involvement of commissural interneurons.
    Buchanan JT; McPherson DR
    J Physiol Paris; 1995; 89(4-6):221-33. PubMed ID: 8861820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of motoneurons and interneurons in the spinal network for escapes initiated by the mauthner cell in goldfish.
    Fetcho JR; Faber DS
    J Neurosci; 1988 Nov; 8(11):4192-213. PubMed ID: 3183720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Longitudinal gradients in the spinal cord of Xenopus embryos and their possible role in coordination of swimming.
    Roberts A; Tunstall MJ
    Eur J Morphol; 1994 Aug; 32(2-4):176-84. PubMed ID: 7803164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitatory and inhibitory postsynaptic potentials in alpha-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region.
    Shefchyk SJ; Jordan LM
    J Neurophysiol; 1985 Jun; 53(6):1345-55. PubMed ID: 4009222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Birinyi A; Viszokay K; Wéber I; Kiehn O; Antal M
    J Comp Neurol; 2003 Jul; 461(4):429-40. PubMed ID: 12746860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor patterns for two distinct rhythmic behaviors evoked by excitatory amino acid agonists in the Xenopus embryo spinal cord.
    Soffe SR
    J Neurophysiol; 1996 May; 75(5):1815-25. PubMed ID: 8734582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming.
    Clarke JD; Roberts A
    J Physiol; 1984 Sep; 354():345-62. PubMed ID: 6481637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 5-HT Modulation of identified segmental premotor interneurons in the lamprey spinal cord.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2006 Aug; 96(2):931-5. PubMed ID: 16707720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function.
    Buchanan JT; Grillner S; Cullheim S; Risling M
    J Neurophysiol; 1989 Jul; 62(1):59-69. PubMed ID: 2754481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.
    Wenner P; O'Donovan MJ
    J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway.
    Li WC; Soffe SR; Roberts A
    J Neurophysiol; 2004 Aug; 92(2):895-904. PubMed ID: 15028739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of frequency during swimming in Xenopus embryos: a study on interneuronal recruitment in a spinal rhythm generator.
    Sillar KT; Roberts A
    J Physiol; 1993 Dec; 472():557-72. PubMed ID: 8145161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Descending projections and excitation during fictive swimming in Xenopus embryos: neuroanatomy and lesion experiments.
    Roberts A; Alford ST
    J Comp Neurol; 1986 Aug; 250(2):253-61. PubMed ID: 3745515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lumbar commissural interneurons with reticulospinal inputs in the cat: morphology and discharge patterns during fictive locomotion.
    Matsuyama K; Nakajima K; Mori F; Aoki M; Mori S
    J Comp Neurol; 2004 Jul; 474(4):546-61. PubMed ID: 15174072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing
    Ferrario A; Saccomanno V; Zhang HY; Borisyuk R; Li WC
    J Neurosci; 2023 Feb; 43(8):1387-1404. PubMed ID: 36693757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.