These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6737030)

  • 41. Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing
    Ferrario A; Saccomanno V; Zhang HY; Borisyuk R; Li WC
    J Neurosci; 2023 Feb; 43(8):1387-1404. PubMed ID: 36693757
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.
    Li WC; Perrins R; Soffe SR; Yoshida M; Walford A; Roberts A
    J Comp Neurol; 2001 Dec; 441(3):248-65. PubMed ID: 11745648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphological variability, segmental relationships, and functional role of a class of commissural interneurons in the spinal cord of goldfish.
    Fetcho JR
    J Comp Neurol; 1990 Sep; 299(3):283-98. PubMed ID: 2229481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord.
    Zhong G; Droho S; Crone SA; Dietz S; Kwan AC; Webb WW; Sharma K; Harris-Warrick RM
    J Neurosci; 2010 Jan; 30(1):170-82. PubMed ID: 20053899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activity patterns and synaptic organization of ventrally located interneurons in the embryonic chick spinal cord.
    Ritter A; Wenner P; Ho S; Whelan PJ; O'Donovan MJ
    J Neurosci; 1999 May; 19(9):3457-71. PubMed ID: 10212306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine.
    Roberts A; Dale N; Ottersen OP; Storm-Mathisen J
    Development; 1988 Jul; 103(3):447-61. PubMed ID: 3246217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Central synapses of spinal motoneurons innervating the trunk swimming muscles of Xenopus laevis embryos.
    Roberts A; Walford A
    Acta Biol Hung; 1996; 47(1-4):371-84. PubMed ID: 9124006
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Segmental, synaptic actions of commissural interneurons in the mouse spinal cord.
    Quinlan KA; Kiehn O
    J Neurosci; 2007 Jun; 27(24):6521-30. PubMed ID: 17567813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurotransmitter systems of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Wéber I; Veress G; Szucs P; Antal M; Birinyi A
    Brain Res; 2007 Oct; 1178():65-72. PubMed ID: 17920568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discharge patterns of trigeminal commissural last-order interneurons during fictive mastication in the rabbit.
    Donga R; Lund JP
    J Neurophysiol; 1991 Nov; 66(5):1564-78. PubMed ID: 1765794
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.
    Soffe SR; Roberts A; Li WC
    J Physiol; 2009 Oct; 587(Pt 20):4829-44. PubMed ID: 19703959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The neuroanatomy of an amphibian embryo spinal cord.
    Roberts A; Clarke JD
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):195-212. PubMed ID: 17506218
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae.
    Sillar KT; Simmers AJ; Wedderburn JF
    Proc Biol Sci; 1992 Jul; 249(1324):65-70. PubMed ID: 1359549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A role for potassium currents in the generation of the swimming motor pattern of Xenopus embryos.
    Wall MJ; Dale N
    J Neurophysiol; 1994 Jul; 72(1):337-48. PubMed ID: 7965018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching.
    Berkowitz A
    J Neurophysiol; 2008 Jun; 99(6):2887-901. PubMed ID: 18385486
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rhythmicity of spinal neurons activated during each form of fictive scratching in spinal turtles.
    Berkowitz A
    J Neurophysiol; 2001 Aug; 86(2):1026-36. PubMed ID: 11495970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions.
    Bannatyne BA; Edgley SA; Hammar I; Jankowska E; Maxwell DJ
    Eur J Neurosci; 2003 Oct; 18(8):2273-84. PubMed ID: 14622188
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trisynaptic inhibition from the contralateral vertical semicircular canal nerves to neck motoneurons mediated by spinal commissural neurons.
    Sugiuchi Y; Izawa Y; Shinoda Y
    J Neurophysiol; 1995 May; 73(5):1973-87. PubMed ID: 7623095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.