These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6737030)

  • 61. Spinal interneurons that are selectively activated during fictive flexion reflex.
    Berkowitz A
    J Neurosci; 2007 Apr; 27(17):4634-41. PubMed ID: 17460076
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Central pattern generator interneurons are targets for the modulatory serotonergic cerebral giant cells in the feeding system of Lymnaea.
    Yeoman MS; Brierley MJ; Benjamin PR
    J Neurophysiol; 1996 Jan; 75(1):11-25. PubMed ID: 8822538
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord.
    Tresch MC; Kiehn O
    J Neurophysiol; 1999 Dec; 82(6):3563-74. PubMed ID: 10601482
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord.
    Hartenstein V
    J Comp Neurol; 1993 Feb; 328(2):213-31. PubMed ID: 8423241
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis.
    Clarke JD; Hayes BP; Hunt SP; Roberts A
    J Physiol; 1984 Mar; 348():511-25. PubMed ID: 6201612
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Patterns of synaptic drive to ventrally located spinal neurones in Rana temporaria embryos during rhythmic and non-rhythmic motor responses.
    Soffe SR; Sillar KT
    J Exp Biol; 1991 Mar; 156():101-18. PubMed ID: 2051128
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Central modulation of stretch receptor neurons during fictive locomotion in lamprey.
    Vinay L; Barthe JY; Grillner S
    J Neurophysiol; 1996 Aug; 76(2):1224-35. PubMed ID: 8871232
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A neuronal mechanism for sensory gating during locomotion in a vertebrate.
    Sillar KT; Roberts A
    Nature; 1988 Jan; 331(6153):262-5. PubMed ID: 3336439
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spinal network of the Mauthner cell.
    Fetcho JR
    Brain Behav Evol; 1991; 37(5):298-316. PubMed ID: 1933252
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Activities of spinal neurons during brain stem-dependent fictive swimming in lamprey.
    Buchanan JT; Kasicki S
    J Neurophysiol; 1995 Jan; 73(1):80-7. PubMed ID: 7714592
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles.
    Zhang HY; Li WC; Heitler WJ; Sillar KT
    J Physiol; 2009 Sep; 587(Pt 18):4455-66. PubMed ID: 19635820
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae.
    Sillar KT; Reith CA; McDearmid JR
    Ann N Y Acad Sci; 1998 Nov; 860():318-32. PubMed ID: 9928322
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experiments on the central pattern generator for swimming in amphibian embryos.
    Kahn JA; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1982 Jan; 296(1081):229-43. PubMed ID: 17506220
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The role of a trigeminal sensory nucleus in the initiation of locomotion.
    Buhl E; Roberts A; Soffe SR
    J Physiol; 2012 May; 590(10):2453-69. PubMed ID: 22393253
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The early development and physiology of
    Saccomanno V; Love H; Sylvester A; Li WC
    J Neurophysiol; 2021 Nov; 126(5):1814-1830. PubMed ID: 34705593
    [No Abstract]   [Full Text] [Related]  

  • 76. The stopping response of Xenopus laevis embryos: pharmacology and intracellular physiology of rhythmic spinal neurones and hindbrain neurones.
    Boothby KM; Roberts A
    J Exp Biol; 1992 Aug; 169():65-86. PubMed ID: 1402608
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry.
    Rabe N; Gezelius H; Vallstedt A; Memic F; Kullander K
    J Neurosci; 2009 Dec; 29(50):15642-9. PubMed ID: 20016078
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Morphology of the Mauthner axon inhibitory system in tench (Tinca tinca L.) spinal cord.
    Yasargil GM; Sandri C
    Neurosci Lett; 1987 Oct; 81(1-2):63-8. PubMed ID: 3696475
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A longitudinal gradient of synaptic drive in the spinal cord of Xenopus embryos and its role in co-ordination of swimming.
    Tunstall MJ; Roberts A
    J Physiol; 1994 Feb; 474(3):393-405. PubMed ID: 8014901
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Xenopus embryonic spinal neurons recorded in situ with patch-clamp electrodes--conditional oscillators after all?
    Aiken SP; Kuenzi FM; Dale N
    Eur J Neurosci; 2003 Jul; 18(2):333-43. PubMed ID: 12887415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.