These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 6738015)
1. On the propagation of a wave front in viscoelastic arteries. Holenstein R; Nerem RM; Niederer PF J Biomech Eng; 1984 May; 106(2):115-22. PubMed ID: 6738015 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896 [TBL] [Abstract][Full Text] [Related]
3. A viscoelastic model for use in predicting arterial pulse waves. Holenstein R; Niederer P; Anliker M J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195 [TBL] [Abstract][Full Text] [Related]
4. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422 [TBL] [Abstract][Full Text] [Related]
5. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750 [TBL] [Abstract][Full Text] [Related]
6. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers. Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717 [TBL] [Abstract][Full Text] [Related]
7. [Small disturbance in arterial blood flow]. Gaur M; Rai A Biofizika; 1989; 34(2):310-7. PubMed ID: 2742907 [TBL] [Abstract][Full Text] [Related]
8. Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model. Menacho J; Rotllant L; Molins JJ; Reyes G; García-Granada AA; Balcells M; Martorell J Biomech Model Mechanobiol; 2018 Apr; 17(2):589-603. PubMed ID: 29168070 [TBL] [Abstract][Full Text] [Related]
9. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube. Ox RH Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803 [TBL] [Abstract][Full Text] [Related]
10. Effect of initial stresses on the wave propagation in arteries. Misra JC; Choudhury KR J Math Biol; 1983; 18(1):53-67. PubMed ID: 6631263 [TBL] [Abstract][Full Text] [Related]
11. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data. Bertaglia G; Navas-Montilla A; Valiani A; Monge García MI; Murillo J; Caleffi V J Biomech; 2020 Feb; 100():109595. PubMed ID: 31911051 [TBL] [Abstract][Full Text] [Related]
12. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship]. Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563 [TBL] [Abstract][Full Text] [Related]
13. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics. Mynard JP; Smolich JJ Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H307-18. PubMed ID: 24878775 [TBL] [Abstract][Full Text] [Related]
14. Wave propagation in a model of the arterial circulation. Wang JJ; Parker KH J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557 [TBL] [Abstract][Full Text] [Related]
15. The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Maxwell JA; Anliker M Biophys J; 1968 Aug; 8(8):920-50. PubMed ID: 5661901 [TBL] [Abstract][Full Text] [Related]
16. [A mathematical model of hemodynamic processes for distal pulse wave formation]. Fedotov AA Biofizika; 2015; 60(2):343-7. PubMed ID: 26016031 [TBL] [Abstract][Full Text] [Related]
17. Separate determination of the pulsatile elastic and viscous forces developed in the arterial wall in vivo. Bauer RD; Busse R; Schabert A; Summa Y; Wetterer E Pflugers Arch; 1979 Jul; 380(3):221-6. PubMed ID: 573462 [TBL] [Abstract][Full Text] [Related]
18. The role of the surrounding tissue in the propagation of waves through the arterial system. Dinnar U TIT J Life Sci; 1975; 5(3-4):49-56. PubMed ID: 1231056 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear separation of forward and backward running waves in elastic conduits. Stergiopulos N; Tardy Y; Meister JJ J Biomech; 1993 Feb; 26(2):201-9. PubMed ID: 8429061 [TBL] [Abstract][Full Text] [Related]
20. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]