These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 673839)
1. The chemical synthesis of the anticodon loop of an eukaryotic initiator tRNA containing the hypermodified nucleoside N6-/N-threonylcarbonyl/-adenosine/t6A/1. Adamiak RW; Biała E; Grześkowiak K; Kierzek R; Kraszewski A; Markiewicz WT; Okupniak J; Stawiński J; Wiewiórowski M Nucleic Acids Res; 1978 Jun; 5(6):1889-905. PubMed ID: 673839 [TBL] [Abstract][Full Text] [Related]
2. Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. Stuart JW; Gdaniec Z; Guenther R; Marszalek M; Sochacka E; Malkiewicz A; Agris PF Biochemistry; 2000 Nov; 39(44):13396-404. PubMed ID: 11063577 [TBL] [Abstract][Full Text] [Related]
3. Chemical Synthesis of Oligoribonucleotide (ASL of tRNA Debiec K; Matuszewski M; Podskoczyj K; Leszczynska G; Sochacka E Chemistry; 2019 Oct; 25(58):13309-13317. PubMed ID: 31328310 [TBL] [Abstract][Full Text] [Related]
4. Hypermodified nucleoside carboxyl group as a target site for specific tRNA modification. Górnicki P; Judek M; Wolański A; Krzyzosiak WJ Eur J Biochem; 1986 Mar; 155(2):371-5. PubMed ID: 3956493 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of oligoribonucleotides containing N6-alkyladenosine and 2-methylthio-N6-alkyladenosine. Kierzek E; Kierzek R Curr Protoc Nucleic Acid Chem; 2004 Sep; Chapter 4():Unit 4.23. PubMed ID: 18428929 [TBL] [Abstract][Full Text] [Related]
6. Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Raba M; Limburg K; Burghagen M; Katze JR; Simsek M; Heckman JE; Rajbhandary UL; Gross HJ Eur J Biochem; 1979 Jun; 97(1):305-18. PubMed ID: 225173 [TBL] [Abstract][Full Text] [Related]
7. Studies on transfer ribonucleic acids and related compounds. XXXVIII. A rapid method for the synthesis of ribooligonucleotides by using 3',5'-unsubstituted nucleosides. Synthesis of a hexanucleotide containing anticodon triplet of E. coli tRNA fMet. Ohtsuka E; Wakabayashi T; Ikehara M Chem Pharm Bull (Tokyo); 1981 Mar; 29(3):759-65. PubMed ID: 6166401 [No Abstract] [Full Text] [Related]
8. The synthesis of oligoribonucleotides containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines via post-synthetic modification of precursor oligomers. Kierzek E; Kierzek R Nucleic Acids Res; 2003 Aug; 31(15):4461-71. PubMed ID: 12888506 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of the tRNA(Lys,3) anticodon stem-loop domain containing the hypermodified ms2t6A nucleoside. Bajji AC; Davis DR J Org Chem; 2002 Jul; 67(15):5352-8. PubMed ID: 12126427 [TBL] [Abstract][Full Text] [Related]
10. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes. Morin A; Auxilien S; Senger B; Tewari R; Grosjean H RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905 [TBL] [Abstract][Full Text] [Related]
11. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A. Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427 [TBL] [Abstract][Full Text] [Related]
12. Efficient conversion of N Matuszewski M; Debiec K; Sochacka E Chem Commun (Camb); 2017 Jul; 53(56):7945-7948. PubMed ID: 28657616 [TBL] [Abstract][Full Text] [Related]
13. On the function of N-[(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl]threonine in transfer ribonucleic acid. Metal ion binding studies. Reddy PR; Hamill WD; Chheda GB; Schweizer MP Biochemistry; 1981 Aug; 20(17):4979-86. PubMed ID: 6794602 [TBL] [Abstract][Full Text] [Related]
14. Chemical modification of N6-(N-threonylcarbonyl) adenosine. Part II. Condensation of the carboxyl group with amines. Krzyzosiak WJ; Biernat J; Ciesiołka J; Górnicki P; Wiewiórowski M Nucleic Acids Res; 1979 Nov; 7(6):1663-74. PubMed ID: 503865 [TBL] [Abstract][Full Text] [Related]
15. Studies on transfer ribonucleic acids and related compounds. XL. Synthesis of an eicosaribonucleotide corresponding to residues 35-54 of tRNAfMet from E. coli. Ohtsuka E; Fujiyama K; Ikehara M Nucleic Acids Res; 1981 Jul; 9(14):3503-22. PubMed ID: 7024916 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide sequence of cytoplasmic initiator tRNA from Tetrahymena thermophila. Kuchino Y; Mita T; Nishimura S Nucleic Acids Res; 1981 Sep; 9(18):4557-62. PubMed ID: 7301582 [TBL] [Abstract][Full Text] [Related]
17. Molecular basis for t6A modification in human mitochondria. Zhou JB; Wang Y; Zeng QY; Meng SX; Wang ED; Zhou XL Nucleic Acids Res; 2020 Apr; 48(6):3181-3194. PubMed ID: 32047918 [TBL] [Abstract][Full Text] [Related]
18. The chemical synthesis of E. coli tRNA(Lys) anticodon loop fragment and its analogues. Sochacka E Nucleosides Nucleotides; 1998; 17(1-3):327-38. PubMed ID: 9708353 [TBL] [Abstract][Full Text] [Related]
19. Chromatography on Sephadex LH20 as an efficient purification step after removal of internucleotide 2,2,2-trichloroethyl protective groups from oligoribonucleotide phosphotriesters. Grześkowiak K; Adamiak RW; Wiewiórowski M Nucleic Acids Res; 1980 Mar; 8(5):1097-105. PubMed ID: 7443541 [TBL] [Abstract][Full Text] [Related]
20. Nucleoside-3'-phosphotriesters as key intermediates for the oligoribonucleotide synthesis. III. An improved preparation of nucleoside 3'-phosphotriesters, their 1H NMR characterization and new conditions for removal of 2-cyanoethyl group. Adamiak RW; Barciszewska MZ; Biala E; Grzéskowiak K; Kierzek R; Kraszewski A; Markiewicz WT; Wiewiórowski M Nucleic Acids Res; 1976 Dec; 3(12):3397-408. PubMed ID: 1005124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]