These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6740315)

  • 21. The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus.
    Goldsmith TH; Butler BK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):135-42. PubMed ID: 12607042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological and pharmacological analysis of suppressive rod-cone interaction in Necturus retina [corrected].
    Eysteinsson T; Frumkes TE
    J Neurophysiol; 1989 Apr; 61(4):866-77. PubMed ID: 2723725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diurnal changes in the pigeon electroretinogram.
    Barattini S; Battisti B; Cervetto L; Marroni P
    Rev Can Biol; 1981 Mar; 40(1):133-7. PubMed ID: 7195601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral sensitivity of the red and yellow oil droplet fields of the pigeon (Columba livia).
    Martin GR; Muntz WR
    Nature; 1978 Aug; 274(5671):620-1. PubMed ID: 672999
    [No Abstract]   [Full Text] [Related]  

  • 25. Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina.
    Richter A; Simon EJ
    J Physiol; 1975 Jun; 248(2):317-34. PubMed ID: 1151785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Light adaptation properties of receptor potentials of cyprinid retina].
    Xu LW; Yang XL
    Sheng Li Xue Bao; 1991 Aug; 43(4):311-21. PubMed ID: 1754898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones.
    Normann RA; Werblin FS
    J Gen Physiol; 1974 Jan; 63(1):37-61. PubMed ID: 4359063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light path and photon capture in turtle photoreceptors.
    Baylor DA; Fettiplace R
    J Physiol; 1975 Jun; 248(2):433-64. PubMed ID: 1151792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Receptive field organization of ganglion cells in the frog retina: contributions from cones, green rods and red rods.
    Bäckström AC; Reuter T
    J Physiol; 1975 Mar; 246(1):79-107. PubMed ID: 1079535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons.
    Frumkes TE; Wu SM
    J Neurophysiol; 1990 Sep; 64(3):1043-54. PubMed ID: 2230916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultraviolet vision in birds: what is its function?
    Bennett AT; Cuthill IC
    Vision Res; 1994 Jun; 34(11):1471-8. PubMed ID: 8023459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Action spectra and adaptation properties of carp photoreceptors.
    Witkovsky P; Nelson J; Ripps H
    J Gen Physiol; 1973 Apr; 61(4):401-23. PubMed ID: 4694741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [A dynamic model of the interaction of cones with bright horizontal cells in the carp retina].
    Babin DN; Chernorizov AM; Sokolov EN; Erchenkov VG
    Neirofiziologiia; 1989; 21(4):461-7. PubMed ID: 2812137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection and resolution of visual stimuli by turtle photoreceptors.
    Baylor DA; Hodgkin AL
    J Physiol; 1973 Oct; 234(1):163-98. PubMed ID: 4766219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavioral, morphological and physiological correlates of diurnal and nocturnal vision in selected wading bird species.
    Rojas LM; McNeil R; Cabana T; Lachapelle P
    Brain Behav Evol; 1999; 53(5-6):227-42. PubMed ID: 10473901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells.
    Kamermans M; van Dijk BW; Spekreijse H
    J Gen Physiol; 1991 Apr; 97(4):819-43. PubMed ID: 1711573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cancellation of rod signals by cones, and cone signals by rods in the cat retina.
    Rodieck RW; Rushton WA
    J Physiol; 1976 Jan; 254(3):775-85. PubMed ID: 1255506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinal morphology and electrophysiology of two caprimulgiformes birds: the cave-living and nocturnal oilbird (Steatornis caripensis), and the crepuscularly and nocturnally foraging common pauraque (Nyctidromus albicollis).
    Rojas LM; Ramírez Y; McNeil R; Mitchell M; Marín G
    Brain Behav Evol; 2004; 64(1):19-33. PubMed ID: 15051964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual adaptations in a diurnal rodent, Octodon degus.
    Jacobs GH; Calderone JB; Fenwick JA; Krogh K; Williams GA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 May; 189(5):347-61. PubMed ID: 12679876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.