BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6741576)

  • 1. Phasic variations of extracellular potassium during fictive swimming in the lamprey spinal cord in vitro.
    Wallén P; Grafe P; Grillner S
    Acta Physiol Scand; 1984 Mar; 120(3):457-63. PubMed ID: 6741576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the control of myotomal motoneurones during "fictive swimming" in the lamprey spinal cord in vitro.
    Russell DF; Wallén P
    Acta Physiol Scand; 1983 Feb; 117(2):161-70. PubMed ID: 6869028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phasic modulation of reticulospinal neurones during fictive locomotion and other types of spinal motor activity in lamprey.
    Kasicki S; Grillner S; Ohta Y; Dubuc R; Brodin L
    Brain Res; 1989 Apr; 484(1-2):203-16. PubMed ID: 2713681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of spinal cord inputs in modulating the activity of reticulospinal neurons during fictive locomotion in the lamprey.
    Dubuc R; Grillner S
    Brain Res; 1989 Mar; 483(1):196-200. PubMed ID: 2650805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of 'fictive swimming' by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system.
    McClellan AD; Grillner S
    Brain Res; 1984 May; 300(2):357-61. PubMed ID: 6733478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal.
    Wallén P; Williams TL
    J Physiol; 1984 Feb; 347():225-39. PubMed ID: 6142945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neuronal bases of locomotion in lamprey--in vitro studies of the brainstem-spinal cord.
    Grillner S; Wallén P; Brodin L; Christenson J; Dubuc R; Hill R; Ohta Y
    Acta Biol Hung; 1988; 39(2-3):145-9. PubMed ID: 3077001
    [No Abstract]   [Full Text] [Related]  

  • 8. Descending control and sensory gating of 'fictive' swimming and turning responses elicited in an in vitro preparation of the lamprey brainstem/spinal cord.
    McClellan AD
    Brain Res; 1984 Jun; 302(1):151-62. PubMed ID: 6733501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanosensitive neurons in the spinal cord of the lamprey.
    Grillner S; McClellan A; Sigvardt K
    Brain Res; 1982 Mar; 235(1):169-73. PubMed ID: 7188321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of putative excitatory amino acid neurotransmitters in the initiation of locomotion in the lamprey spinal cord. I. The effects of excitatory amino acid antagonists.
    Brodin L; Grillner S
    Brain Res; 1985 Dec; 360(1-2):139-48. PubMed ID: 2866822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identified neurons in the lamprey spinal cord and their roles in fictive swimming.
    Rovainen CM
    Symp Soc Exp Biol; 1983; 37():305-30. PubMed ID: 6679117
    [No Abstract]   [Full Text] [Related]  

  • 12. Different forms of locomotion in the spinal lamprey.
    Hsu LJ; Orlovsky GN; Zelenin PV
    Eur J Neurosci; 2014 Jun; 39(12):2037-49. PubMed ID: 24641591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neuronal correlate of locomotion in fish. "Fictive swimming" induced in an in vitro preparation of the lamprey spinal cord.
    Cohen AH; Wallén P
    Exp Brain Res; 1980; 41(1):11-8. PubMed ID: 7461065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of locomotor command systems in the sea lamprey.
    Currie SN; Ayers J
    Brain Res; 1983 Nov; 279(1-2):238-40. PubMed ID: 6640343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of magnesium on fictive locomotion induced by activation of N-methyl-D-aspartate (NMDA) receptors in the lamprey spinal cord in vitro.
    Brodin L; Grillner S
    Brain Res; 1986 Aug; 380(2):244-52. PubMed ID: 2428424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swimming rhythm generation in the caudal hindbrain of the lamprey.
    Buchanan JT
    J Neurophysiol; 2018 May; 119(5):1681-1692. PubMed ID: 29364070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord.
    Buchanan JT
    J Neurophysiol; 1999 May; 81(5):2037-45. PubMed ID: 10322045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiation and sensory gating of 'fictive' swimming and withdrawal responses in an in vitro preparation of the lamprey spinal cord.
    McClellan AD; Grillner S
    Brain Res; 1983 Jun; 269(2):237-50. PubMed ID: 6883083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous activation of glycine and NMDA receptors in lamprey spinal cord during fictive locomotion.
    Alford S; Williams TL
    J Neurosci; 1989 Aug; 9(8):2792-800. PubMed ID: 2549218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.