These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 6741696)

  • 1. Effect of stretch on the equatorial X-ray diffraction pattern from frog skeletal muscle in rigor.
    Tanaka H; Sugi H; Hashizume H
    Adv Exp Med Biol; 1984; 170():203-5. PubMed ID: 6741696
    [No Abstract]   [Full Text] [Related]  

  • 2. Factors affecting the equatorial X-ray diffraction pattern from contracting frog skeletal muscle.
    Tanaka H; Hashizume H; Sugi H
    Adv Exp Med Biol; 1984; 170():193-202. PubMed ID: 6611027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-angle X-ray scattering from myosin heads in relaxed and rigor frog skeletal muscles.
    Poulsen FR; Lowy J
    Nature; 1983 May 12-18; 303(5913):146-52. PubMed ID: 6843666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stretch and release on equatorial X-ray diffraction during a twitch contraction of frog skeletal muscle.
    Iwamoto H; Kobayashi T; Amemiya Y; Wakabayashi K
    Biophys J; 1995 Jan; 68(1):227-34. PubMed ID: 7711245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction.
    Takezawa Y; Kim DS; Ogino M; Sugimoto Y; Kobayashi T; Arata T; Wakabayashi K
    Biophys J; 1999 Apr; 76(4):1770-83. PubMed ID: 10096877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of the mechanics and small-angle equatorial x-ray pattern of the frog skeletal muscle during transition and rigor at different temperatures].
    Savel'ev VB
    Biofizika; 1986; 31(6):1027-32. PubMed ID: 3492220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Change of low-angle X-ray diffraction in the process of the transition of striated muscle into rigor].
    Savel'ev VB
    Biofizika; 1982; 27(6):1044-8. PubMed ID: 7159614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pressure on equatorial x-ray fiber diffraction from skeletal muscle fibers.
    Knight PJ; Fortune NS; Geeves MA
    Biophys J; 1993 Aug; 65(2):814-22. PubMed ID: 8218906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle crossbridge positions from equatorial diffraction data: an approach towards solving the phase problem.
    Squire J; Harford J
    Adv Exp Med Biol; 1984; 170():221-36. PubMed ID: 6741699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light and x-ray diffraction studies on chick skeletal muscle under controlled physiological conditions.
    Matsubara I
    J Physiol; 1974 May; 238(3):473-86. PubMed ID: 4852995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling analysis of myosin-based meridional X-ray reflections from frog skeletal muscles in relaxed and contracting states.
    Oshima K; Takezawa Y; Sugimoto Y; Kiyotoshi M; Wakabayashi K
    Adv Exp Med Biol; 2003; 538():243-9. PubMed ID: 15098672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensification of the 5.9-nm actin layer line in contracting muscle.
    Matsubara I; Yagi N; Miura H; Ozeki M; Izumi T
    Nature; 1984 Nov 29-Dec 5; 312(5993):471-3. PubMed ID: 6334236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weakly attached cross-bridges in relaxed frog muscle fibers.
    Jung DW; Blangé T; de Graaf H; Treijtel BW
    Biophys J; 1989 Apr; 55(4):605-19. PubMed ID: 2785823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of an X-ray television for diffraction of the frog striated muscle.
    Matsubara I; Yagi N; Hashizume H
    Nature; 1975 Jun; 255(5511):728-9. PubMed ID: 1079574
    [No Abstract]   [Full Text] [Related]  

  • 15. An X-ray diffraction study on contraction of rat papillary muscle with different afterloads.
    Okuyama H; Yagi N; Toyota H; Araki J; Shimizu J; Iribe G; Nakamura K; Mohri S; Kakishita M; Hashimoto K; Morimoto T; Tsujioka K; Kajiya F; Suga H
    Adv Exp Med Biol; 2003; 538():533-9; discussion 539. PubMed ID: 15098696
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of stretch on sarcoplasmic free calcium of frog skeletal muscle at rest.
    Snowdowne KW
    Biochim Biophys Acta; 1986 Nov; 862(2):441-4. PubMed ID: 3778902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of muscle storage and stimulation on the intensity of Z-reflection of its equatorial x-ray pattern].
    Savel'ev VB
    Biofizika; 1986; 31(4):720-1. PubMed ID: 3756237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved x-ray study of effect of sinusoidal length change on tetanized frog muscle.
    Wakabayashi K; Tanaka H; Kobayashi T; Amemiya Y; Hamanaka T; Nishizawa S; Sugi H; Mitsui T
    Biophys J; 1986 Feb; 49(2):581-4. PubMed ID: 3485452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray equatorial diffraction during ATP-induced Ca(2+)-free muscle contraction and the effect of ADP.
    Horiuti K; Yagi N; Kagawa K; Wakabayashi K; Yamada K
    J Biochem; 1994 May; 115(5):953-7. PubMed ID: 7961611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-stimulated luminescence used to measure x-ray diffraction of a contracting striated muscle.
    Amemiya Y; Wakabayashi K; Tanaka H; Ueno Y; Miyahara J
    Science; 1987 Jul; 237(4811):164-8. PubMed ID: 3496662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.