These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6742787)

  • 1. The functional anatomy of frontal lobe neglect in the monkey: behavioral and quantitative 2-deoxyglucose studies.
    Deuel RK; Collins RC
    Ann Neurol; 1984 Jun; 15(6):521-9. PubMed ID: 6742787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cortical network for directed attention and unilateral neglect.
    Mesulam MM
    Ann Neurol; 1981 Oct; 10(4):309-25. PubMed ID: 7032417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic mapping of the forelimb motor system in the rat: local cerebral glucose utilization following execution of forelimb movements mainly involving proximal musculature.
    Ebrahimi-Gaillard A; Beck T; Wree A; Roger M
    Somatosens Mot Res; 1994; 11(3):229-41. PubMed ID: 7887055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of action: grasping with the mind's hand.
    Raos V; Evangeliou MN; Savaki HE
    Neuroimage; 2004 Sep; 23(1):193-201. PubMed ID: 15325366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefrontal-limbic epilepsy: experimental functional anatomy.
    Collins RC; Carnes KM; Price JL
    J Clin Neurophysiol; 1988 Jan; 5(1):105-17. PubMed ID: 3250962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions.
    Gonzalez CL; Gharbawie OA; Williams PT; Kleim JA; Kolb B; Whishaw IQ
    Eur J Neurosci; 2004 Dec; 20(12):3442-52. PubMed ID: 15610177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skilled reaching impairments from the lateral frontal cortex component of middle cerebral artery stroke: a qualitative and quantitative comparison to focal motor cortex lesions in rats.
    Gharbawie OA; Gonzalez CL; Whishaw IQ
    Behav Brain Res; 2005 Jan; 156(1):125-37. PubMed ID: 15474657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness.
    Doricchi F; Thiebaut de Schotten M; Tomaiuolo F; Bartolomeo P
    Cortex; 2008 Sep; 44(8):983-95. PubMed ID: 18603235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional (14C) 2-deoxyglucose uptake during vibrissae movements evoked by rat motor cortex stimulation.
    Sharp FR; Evans K
    J Comp Neurol; 1982 Jul; 208(3):255-87. PubMed ID: 7119161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of right-hemisphere cortical infarction and muscarinic acetylcholine receptor blockade on spatial visual attention performance in rats.
    Hoff EI; van Oostenbrugge RJ; Liedenbaum M; Steinbusch HW; Blokland A
    Behav Brain Res; 2007 Mar; 178(1):62-9. PubMed ID: 17196269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional mapping of the primate auditory system.
    Poremba A; Saunders RC; Crane AM; Cook M; Sokoloff L; Mishkin M
    Science; 2003 Jan; 299(5606):568-72. PubMed ID: 12543977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct visual pathways for reaching movements in the macaque monkey.
    Tanné J; Boussaoud D; Boyer-Zeller N; Rouiller EM
    Neuroreport; 1995 Dec; 7(1):267-72. PubMed ID: 8742467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of unilateral frontal eye field lesions in the monkey: visual-motor guidance and avoidance behaviour.
    Crowne DP; Yeo CH; Russell IS
    Behav Brain Res; 1981 Mar; 2(2):165-87. PubMed ID: 7248056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projection of precentral, premotor and prefrontal cortex to the basilar pontine grey and to nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis).
    Hartmann-von Monakow K; Akert K; Künzle H
    Schweiz Arch Neurol Neurochir Psychiatr; 1981; 129(2):189-208. PubMed ID: 7323772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional circuitry underlying visual neglect.
    Rushmore RJ; Valero-Cabre A; Lomber SG; Hilgetag CC; Payne BR
    Brain; 2006 Jul; 129(Pt 7):1803-21. PubMed ID: 16731540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rodent model for investigating the neurobiology of contralateral neglect.
    Reep RL; Corwin JV; Cheatwood JL; Van Vleet TM; Heilman KM; Watson RT
    Cogn Behav Neurol; 2004 Dec; 17(4):191-4. PubMed ID: 15622013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic mapping of higher-order visual areas in the monkey.
    Macko KA; Mishkin M
    Res Publ Assoc Res Nerv Ment Dis; 1985; 63():73-86. PubMed ID: 3895333
    [No Abstract]   [Full Text] [Related]  

  • 18. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey.
    Shimoyama I; Dauth GW; Gilman S; Frey KA; Penney JB
    Ann Neurol; 1988 Dec; 24(6):718-26. PubMed ID: 3207355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience-dependent amelioration of motor impairments in adulthood following neonatal medial frontal cortex injury in rats is accompanied by motor map expansion.
    Williams PT; Gharbawie OA; Kolb B; Kleim JA
    Neuroscience; 2006 Sep; 141(3):1315-26. PubMed ID: 16777345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Unilateral lesions of the periarcuate cortex in the monkey].
    Matelli M; Pavesi G; Rizzolatti G
    Boll Soc Ital Biol Sper; 1982 Jan; 58(1-2):66-70. PubMed ID: 7066101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.