BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6742831)

  • 1. Absence of transformation of beta-muricholic acid by human microflora implanted in the digestive tracts of germfree male rats.
    Sacquet EC; Gadelle DP; Riottot MJ; Raibaud PM
    Appl Environ Microbiol; 1984 May; 47(5):1167-8. PubMed ID: 6742831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative formation of omega-muricholic acid by intestinal microorganisms.
    Eyssen H; De Pauw G; Stragier J; Verhulst A
    Appl Environ Microbiol; 1983 Jan; 45(1):141-7. PubMed ID: 6824314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial formation of omega-muricholic acid in rats.
    Sacquet EC; Raibaud PM; Mejean C; Riottot MJ; Leprince C; Leglise PC
    Appl Environ Microbiol; 1979 Jun; 37(6):1127-31. PubMed ID: 485143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal microflora and bile acids. In vitro cholic acid transformation by mixed fecal culture of rats.
    Morotomi M; Kawai Y; Mutai M
    Microbiol Immunol; 1979; 23(9):839-47. PubMed ID: 43948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delta 22-beta-muricholic acid in monoassociated rats and conventional rats.
    Kayahara T; Tamura T; Amuro Y; Higashino K; Igimi H; Uchida K
    Lipids; 1994 Apr; 29(4):289-96. PubMed ID: 8177022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of hyodeoxycholate from beta-muricholate in gnotobiotic rats associated with Clostridium HDCA-1.
    Eyssen H; De Pauw G; Van Eldere J
    Prog Clin Biol Res; 1985; 181():103-6. PubMed ID: 4022963
    [No Abstract]   [Full Text] [Related]  

  • 7. Intestinal microflora and bile acids. Effect of bile acids on the distribution of microflora and bile acid in the digestive tract of the rat.
    Sakai K; Makino T; Kawai Y; Mutai M
    Microbiol Immunol; 1980; 24(3):187-96. PubMed ID: 6447830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cholesterol feeding on synthesis and metabolism of cholesterol and bile acids in germfree rats.
    Gustafsson BE; Angelin B; Einarsson K; Gustafsson JA
    J Lipid Res; 1977 Nov; 18(6):717-21. PubMed ID: 925516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Action of microbial flora of the digestive tract on the metabolism of bile acids in the rat (author's transl)].
    Sacquet E; Van Heijenoort Y; Riottot M; Leprince C
    Biochim Biophys Acta; 1975 Jan; 380(1):52-65. PubMed ID: 1122311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of beta-muricholic acid in man.
    Sacquet E; Parquet M; Riottot M; Raizman A; Nordlinger B; Infante R
    Steroids; 1985 May; 45(5):411-26. PubMed ID: 3834660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute effects of dietary cholic acid and methylazoxymethanol acetate on colon epithelial cell proliferation; metabolism of bile salts and neutral sterols in conventional and germfree SD rats.
    Weidema WF; Deschner EE; Cohen BI; DeCosse JJ
    J Natl Cancer Inst; 1985 Mar; 74(3):665-70. PubMed ID: 3856068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of hyodeoxycholic acid from muricholic acid and hyocholic acid by an unidentified gram-positive rod termed HDCA-1 isolated from rat intestinal microflora.
    Eyssen HJ; De Pauw G; Van Eldere J
    Appl Environ Microbiol; 1999 Jul; 65(7):3158-63. PubMed ID: 10388717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of beta-muricholic acid in the hamster and prairie dog.
    Miki S; Mosbach EH; Cohen BI; Mikami T; Infante R; Ayyad N; McSherry CK
    J Lipid Res; 1993 Oct; 34(10):1709-16. PubMed ID: 8245721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate bile acids in germ-free and conventional mice.
    Eyssen HJ; Parmentier GG; Mertens JA
    Eur J Biochem; 1976 Jul; 66(3):507-14. PubMed ID: 954753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Significance of gastrointestinal microflora for the metabolism of foreign compounds].
    Kujawa M; Macholz R; Schulze J; Schnaak W
    Nahrung; 1987; 31(5-6):619-24. PubMed ID: 2443851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cholesterol feeding on bile acid metabolism in young and aged germ-free rats.
    Uchida K; Satoh T; Chikai T; Takase H; Nomura Y; Nakao H; Takeuchi N
    Jpn J Pharmacol; 1996 Jun; 71(2):113-8. PubMed ID: 8835637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment of the more hydrophilic bile acid ursodeoxycholic acid in the fecal water-soluble fraction after feeding to rats with colon polyps.
    Batta AK; Salen G; Holubec H; Brasitus TA; Alberts D; Earnest DL
    Cancer Res; 1998 Apr; 58(8):1684-7. PubMed ID: 9563483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats.
    Chikai T; Nakao H; Uchida K
    Lipids; 1987 Sep; 22(9):669-71. PubMed ID: 3312906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biosynthesis of ethyl esters of lithocholic acid and isolithocholic acid by rat intestinal microflora.
    Kelsey MI; Sexton SA
    J Steroid Biochem; 1976 Sep; 7(9):641-7. PubMed ID: 979264
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.