These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 6742836)

  • 1. Microbial biodegradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyls.
    Massé R; Messier F; Péloquin L; Ayotte C; Sylvestre M
    Appl Environ Microbiol; 1984 May; 47(5):947-51. PubMed ID: 6742836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50.
    Layton AC; Sanseverino J; Wallace W; Corcoran C; Sayler GS
    Appl Environ Microbiol; 1992 Jan; 58(1):399-402. PubMed ID: 1539985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166.
    Arensdorf JJ; Focht DD
    Appl Environ Microbiol; 1995 Feb; 61(2):443-7. PubMed ID: 7574580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp.
    Barton MR; Crawford RL
    Appl Environ Microbiol; 1988 Feb; 54(2):594-5. PubMed ID: 3355144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics and restriction analysis of the 4-chlorobiphenyl catabolic plasmid, pSS50.
    Hooper SW; Dockendorff TC; Sayler GS
    Appl Environ Microbiol; 1989 May; 55(5):1286-8. PubMed ID: 2757383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls.
    Furukawa K; Tomizuka N; Kamibayashi A
    Appl Environ Microbiol; 1979 Aug; 38(2):301-10. PubMed ID: 117752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem.
    Fulthorpe RR; Wyndham RC
    Appl Environ Microbiol; 1992 Jan; 58(1):314-25. PubMed ID: 1311543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detoxification of hydroxylated polychlorobiphenyls by Sphingomonas sp. strain N-9 isolated from forest soil.
    Mizukami-Murata S; Sakakibara F; Fujita K; Fukuda M; Kuramata M; Takagi K
    Chemosphere; 2016 Dec; 165():173-182. PubMed ID: 27649311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway.
    Sondossi M; Sylvestre M; Ahmad D
    Appl Environ Microbiol; 1992 Feb; 58(2):485-95. PubMed ID: 1610172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains.
    Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK
    Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of plasmids in total degradation of chlorinated biphenyls.
    Furukawa K; Chakrabarty AM
    Appl Environ Microbiol; 1982 Sep; 44(3):619-26. PubMed ID: 6814360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates.
    Kim S; Picardal FW
    FEMS Microbiol Lett; 2000 Apr; 185(2):225-9. PubMed ID: 10754252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5.
    Springael D; Kreps S; Mergeay M
    J Bacteriol; 1993 Mar; 175(6):1674-81. PubMed ID: 8383664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degradation pathway.
    Chang YC; Takada K; Choi D; Toyama T; Sawada K; Kikuchi S
    Appl Biochem Biotechnol; 2013 May; 170(2):381-98. PubMed ID: 23529656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [4-chlorobiphenyl and 4-chlorobenzoic acid biodegradation by Rhodococcus ruber P25].
    Plotnikova EG; Solianikova IP; Egorova DO; Shumkova ES; Golovleva LA
    Mikrobiologiia; 2012; 81(2):159-70. PubMed ID: 22693824
    [No Abstract]   [Full Text] [Related]  

  • 16. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2.
    Xing Z; Hu T; Xiang Y; Qi P; Huang X
    Curr Microbiol; 2020 Jan; 77(1):15-23. PubMed ID: 31650227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RP4::Mu3A-mediated in vivo cloning and transfer of a chlorobiphenyl catabolic pathway.
    Springael D; van Thor J; Goorissen H; Ryngaert A; De Baere R; Van Hauwe P; Commandeur LC; Parsons JR; De Wachter R; Mergeay M
    Microbiology (Reading); 1996 Nov; 142 ( Pt 11)():3283-93. PubMed ID: 8969525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and characterization of catechol 2,3-dioxygenases from biphenyl/polychlorinated biphenyls-degrading bacteria.
    Chang H; Lee J; Roh S; Kim SR; Min KR; Kim CK; Kim EG; Kim Y
    Biochem Biophys Res Commun; 1992 Sep; 187(2):609-14. PubMed ID: 1530619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Degradation of chlorinated biphenyls and products of their bioconversion by Rhodococcus sp. B7a strain].
    Egorova DO; Shumkova ES; Demakov VA; Plotnikova EG
    Prikl Biokhim Mikrobiol; 2010; 46(6):644-50. PubMed ID: 21261074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1: metabolites and enzymes.
    Commandeur LC; May RJ; Mokross H; Bedard DL; Reineke W; Govers HA; Parsons JR
    Biodegradation; 1996-1997; 7(6):435-43. PubMed ID: 9188193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.