These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 6743289)
41. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. Chen W; Li Y; Cui Y; Zhang X; Zhu HL; Zeng Q Eur J Med Chem; 2010 Oct; 45(10):4473-8. PubMed ID: 20691510 [TBL] [Abstract][Full Text] [Related]
42. Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Montargès-Pelletier E; Chardot V; Echevarria G; Michot LJ; Bauer A; Morel JL Phytochemistry; 2008 May; 69(8):1695-709. PubMed ID: 18371995 [TBL] [Abstract][Full Text] [Related]
43. The structure of urease activation complexes examined by flexibility analysis, mutagenesis, and small-angle X-ray scattering. Quiroz-Valenzuela S; Sukuru SC; Hausinger RP; Kuhn LA; Heller WT Arch Biochem Biophys; 2008 Dec; 480(1):51-7. PubMed ID: 18823937 [TBL] [Abstract][Full Text] [Related]
44. Nickel as a micronutrient element for plants. Dalton DA; Russell SA; Evans HJ Biofactors; 1988 Jan; 1(1):11-6. PubMed ID: 3076427 [TBL] [Abstract][Full Text] [Related]
45. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Benini S; Rypniewski WR; Wilson KS; Miletti S; Ciurli S; Mangani S Structure; 1999 Feb; 7(2):205-16. PubMed ID: 10368287 [TBL] [Abstract][Full Text] [Related]
46. Probing variable amine/amide ligation in Ni(II)N2S2 complexes using sulfur K-edge and nickel L-edge X-ray absorption spectroscopies: implications for the active site of nickel superoxide dismutase. Shearer J; Dehestani A; Abanda F Inorg Chem; 2008 Apr; 47(7):2649-60. PubMed ID: 18330983 [TBL] [Abstract][Full Text] [Related]
47. Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Zambelli B; Musiani F; Benini S; Ciurli S Acc Chem Res; 2011 Jul; 44(7):520-30. PubMed ID: 21542631 [TBL] [Abstract][Full Text] [Related]
48. X-ray absorption spectroscopy using synchrotron radiation for structural investigation of organometallic molecules of biological interest. Kincaid BM; Eisenberger P; Hodgson KO; Doniach S Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2340-2. PubMed ID: 1056033 [TBL] [Abstract][Full Text] [Related]
49. Effect of swift heavy ions in Ni-Al nanocrystalline films studied by X-ray absorption spectroscopy. Asokan K; Tsai HM; Bao CW; Chiou JW; Pong WF; Sonia G; Anand TJ Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):454-7. PubMed ID: 18280782 [TBL] [Abstract][Full Text] [Related]
50. Nickel trafficking: insights into the fold and function of UreE, a urease metallochaperone. Musiani F; Zambelli B; Stola M; Ciurli S J Inorg Biochem; 2004 May; 98(5):803-13. PubMed ID: 15134926 [TBL] [Abstract][Full Text] [Related]
51. Multi-step analysis of Hg2+ ion inhibition of jack bean urease. Krajewska B; Zaborska W; Chudy M J Inorg Biochem; 2004 Jun; 98(6):1160-8. PubMed ID: 15149828 [TBL] [Abstract][Full Text] [Related]
52. On the structure of the nickel/iron/sulfur center of the carbon monoxide dehydrogenase from Rhodospirillum rubrum: an x-ray absorption spectroscopy study. Tan GO; Ensign SA; Ciurli S; Scott MJ; Hedman B; Holm RH; Ludden PW; Korszun ZR; Stephens PJ; Hodgson KO Proc Natl Acad Sci U S A; 1992 May; 89(10):4427-31. PubMed ID: 1584775 [TBL] [Abstract][Full Text] [Related]
53. Insights into Urease Inhibition by N-( n-Butyl) Phosphoric Triamide through an Integrated Structural and Kinetic Approach. Mazzei L; Cianci M; Contaldo U; Ciurli S J Agric Food Chem; 2019 Feb; 67(8):2127-2138. PubMed ID: 30735374 [TBL] [Abstract][Full Text] [Related]
54. The effect of compactional pressure on urease activity. Teng CL; Groves MJ Pharm Res; 1988 Dec; 5(12):776-80. PubMed ID: 3247288 [TBL] [Abstract][Full Text] [Related]
56. Multiple intermediate conformations of jack bean urease at low pH: anion-induced refolding. Bhowmick R; Jagannadham MV Protein J; 2006 Sep; 25(6):399-410. PubMed ID: 17043757 [TBL] [Abstract][Full Text] [Related]
57. Purification of urease from jack bean (Canavalia ensiformis) with copper (II) chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) cryogels. Tekiner P; Perçin I; Ergün B; Yavuz H; Aksöz E J Mol Recognit; 2012 Nov; 25(11):549-54. PubMed ID: 23108614 [TBL] [Abstract][Full Text] [Related]
58. Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation. Yuen MH; Fong YH; Nim YS; Lau PH; Wong KB Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10890-E10898. PubMed ID: 29203664 [TBL] [Abstract][Full Text] [Related]
59. An extended-X-ray-absorption-fine-structure study of freeze-dried and solution ovotransferrin. Evidence for water co-ordination at the metal-binding sites. Hasnain SS; Evans RW; Garratt RC; Lindley PF Biochem J; 1987 Oct; 247(2):369-75. PubMed ID: 2827627 [TBL] [Abstract][Full Text] [Related]
60. Urease catalysis and structure. IX. The half-unit and hemipolymers of jack bean urease. Fishbein WN; Nagarajan K; Scurzi W J Biol Chem; 1973 Nov; 248(22):7870-7. PubMed ID: 4750431 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]