These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation. Bakker EP Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627 [TBL] [Abstract][Full Text] [Related]
4. Regulation of electron transfer by sidedness-dependent surface pH. Dependence of the rate of cytochrome c-555 reduction on H+ concentration in the surface region on the periplasmic side of photosynthetic membranes in whole cells, spheroplasts and chromatophores of Chromatium vinosum. Hashimoto K; Nishimura M J Biochem; 1981 Mar; 89(3):909-18. PubMed ID: 6270069 [No Abstract] [Full Text] [Related]
5. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli. Ahmed S; Booth IR Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253 [TBL] [Abstract][Full Text] [Related]
7. Cytochromes and anaerobic sulfide oxidation in the purple sulfur bacterium Chromatium warmingii. Wermter U; Fischer U Z Naturforsch C Biosci; 1983; 38(11-12):960-7. PubMed ID: 6670358 [TBL] [Abstract][Full Text] [Related]
8. Benzyl viologen cation radical: first example of a perfectly selective anion ionophore of the carrier type. Kim CH; Kristjansson JK; White MM; Hollocher TC Biochem Biophys Res Commun; 1982 Oct; 108(3):1126-30. PubMed ID: 7181886 [No Abstract] [Full Text] [Related]
9. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. Fry B; Gest H; Hayes JM FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842 [TBL] [Abstract][Full Text] [Related]
10. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum. Halsey YD; Parson WW Biochim Biophys Acta; 1974 Jun; 347(3):404-16. PubMed ID: 4366890 [No Abstract] [Full Text] [Related]
11. Benzyl viologen-mediated in vivo and in vitro inactivation of glutamine synthetase in Azotobacter chroococcum. Paneque A; Bárcena JA; Cordero N; Revilla E; Llobell A Mol Cell Biochem; 1982 Nov; 49(1):33-41. PubMed ID: 6129569 [No Abstract] [Full Text] [Related]
12. L-aspartate transport in the photosynthetic bacterium Chromatium vinosum. Cobb AD; Knaff DB Arch Biochem Biophys; 1983 Aug; 225(1):86-94. PubMed ID: 6614931 [TBL] [Abstract][Full Text] [Related]
13. Interaction of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria. Trendeleva TA; Rogov AG; Cherepanov DA; Sukhanova EI; Il'yasova TM; Severina II; Zvyagilskaya RA Biochemistry (Mosc); 2012 Sep; 77(9):1021-8. PubMed ID: 23157262 [TBL] [Abstract][Full Text] [Related]
14. Lysine and arginine transport in the photosynthetic bacterium Chromatium vinosum. Kim YA; Knaff DB Arch Biochem Biophys; 1988 Jan; 260(1):134-8. PubMed ID: 3124743 [TBL] [Abstract][Full Text] [Related]
15. Sodium-dependent alpha-aminoisobutyrate transport by the photosynthetic purple sulfur bacterium Chromatium vinosum. Pettitt CA; Davidson VL; Cobb A; Knaff DB Arch Biochem Biophys; 1982 Jun; 216(1):306-13. PubMed ID: 7103510 [No Abstract] [Full Text] [Related]
16. Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride. Rideout D; Bustamante A; Patel J Int J Cancer; 1994 Apr; 57(2):247-53. PubMed ID: 8157363 [TBL] [Abstract][Full Text] [Related]
17. Effects of surface potential and membrane potential on the midpoint potential of cytochrome c-555 bound to the chromatophore membrane of Chromatium vinosum. Itoh S Biochim Biophys Acta; 1980 Jul; 591(2):346-55. PubMed ID: 6249347 [TBL] [Abstract][Full Text] [Related]
18. Oxygen-induced inhibition of light-dependent uptake of tetraphenylphosphonium ions as a probe of a direct interaction between photosynthetic and respiratory components in cells of Rhodopseudomonas capsulata. Rugolo M; Zannoni D Biochem Biophys Res Commun; 1983 May; 113(1):155-62. PubMed ID: 6860334 [TBL] [Abstract][Full Text] [Related]
19. Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites. Magnani P; Doussiere J; Lissolo T Biochim Biophys Acta; 2000 Jul; 1459(1):169-78. PubMed ID: 10924909 [TBL] [Abstract][Full Text] [Related]
20. Effects of lipophilic cations on motility and other physiological properties of Bacillus subtilis. Zaritsky A; Macnab RM J Bacteriol; 1981 Sep; 147(3):1054-62. PubMed ID: 6792185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]