BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6743509)

  • 1. In vitro osteolytic activity of human myeloma plasma cells and the clinical evaluation of myeloma osteoclastic bone lesions.
    Rossi JF; Bataille R
    Br J Cancer; 1984 Jul; 50(1):119-21. PubMed ID: 6743509
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for the secretion of an osteoclast stimulating factor in myeloma.
    Mundy GR; Raisz LG; Cooper RA; Schechter GP; Salmon SE
    N Engl J Med; 1974 Nov; 291(20):1041-6. PubMed ID: 4413338
    [No Abstract]   [Full Text] [Related]  

  • 3. Update on the pathogenesis of osteolysis in multiple myeloma patients.
    Giuliani N; Colla S; Rizzoli V
    Acta Biomed; 2004 Dec; 75(3):143-52. PubMed ID: 15796087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetany and osteolysis in light chain myeloma with amyloidosis.
    Bhakri HL; Cundy TF; Pettingale KW
    Postgrad Med J; 1983 Aug; 59(694):527-9. PubMed ID: 6413962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model.
    Menu E; De Leenheer E; De Raeve H; Coulton L; Imanishi T; Miyashita K; Van Valckenborgh E; Van Riet I; Van Camp B; Horuk R; Croucher P; Vanderkerken K
    Clin Exp Metastasis; 2006; 23(5-6):291-300. PubMed ID: 17086356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editorial: Osteoclastic bone resorption and the hypercalcemia of cancer.
    Brewer HB
    N Engl J Med; 1974 Nov; 291(20):1081-2. PubMed ID: 4412968
    [No Abstract]   [Full Text] [Related]  

  • 7. The critical role of interleukin-6, interleukin-1B and macrophage colony-stimulating factor in the pathogenesis of bone lesions in multiple myeloma.
    Bataille R; Chappard D; Klein B
    Int J Clin Lab Res; 1992; 21(4):283-7. PubMed ID: 1591381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
    Heath DJ; Vanderkerken K; Cheng X; Gallagher O; Prideaux M; Murali R; Croucher PI
    Cancer Res; 2007 Jan; 67(1):202-8. PubMed ID: 17210700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [SDF-1/CXCR4 and multiple myeloma osteolytic bone lesions--review].
    Bao L; Huang XJ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2008 Apr; 16(2):442-6. PubMed ID: 18426683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights in myeloma-induced osteolysis.
    Barillé-Nion S; Bataille R
    Leuk Lymphoma; 2003 Sep; 44(9):1463-7. PubMed ID: 14565645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.
    Andersen TL; Søe K; Sondergaard TE; Plesner T; Delaisse JM
    Br J Haematol; 2010 Feb; 148(4):551-61. PubMed ID: 19919653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple myeloma with Auer-rod-like inclusions.
    Castoldi G; Piva N; Tomasi P
    Haematologica; 1999 Sep; 84(9):859-60. PubMed ID: 10477463
    [No Abstract]   [Full Text] [Related]  

  • 13. Multiple myeloma/hypercalcemia.
    Oyajobi BO
    Arthritis Res Ther; 2007; 9 Suppl 1(Suppl 1):S4. PubMed ID: 17634143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma.
    Xu L; Mohammad KS; Wu H; Crean C; Poteat B; Cheng Y; Cardoso AA; Machal C; Hanenberg H; Abonour R; Kacena MA; Chirgwin J; Suvannasankha A; Srour EF
    Cancer Res; 2016 Dec; 76(23):6901-6910. PubMed ID: 27634757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease.
    Croucher PI; Shipman CM; Van Camp B; Vanderkerken K
    Cancer; 2003 Feb; 97(3 Suppl):818-24. PubMed ID: 12548581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo.
    Chantry AD; Heath D; Mulivor AW; Pearsall S; Baud'huin M; Coulton L; Evans H; Abdul N; Werner ED; Bouxsein ML; Key ML; Seehra J; Arnett TR; Vanderkerken K; Croucher P
    J Bone Miner Res; 2010 Dec; 25(12):2633-46. PubMed ID: 20533325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct bone resorbing activity of murine myeloma cells.
    McDonald DF; Schofield BH; Prezioso EM; Adams VL; Frondoza CA; Trivedi SM; Craig C; Humphrey RL
    Cancer Lett; 1983 Jun; 19(2):119-24. PubMed ID: 6883303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Bone changes in plasmacytoma, non-Hodgkin lymphoma and Hodgkin's disease].
    Kraj M; Maj S; Rostkowska J; Sablińska K; Letowska M; Lukaszewicz M
    Nowotwory; 1983; 33(4):347-54. PubMed ID: 6672780
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma.
    Heath DJ; Chantry AD; Buckle CH; Coulton L; Shaughnessy JD; Evans HR; Snowden JA; Stover DR; Vanderkerken K; Croucher PI
    J Bone Miner Res; 2009 Mar; 24(3):425-36. PubMed ID: 19016584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [An osteolytic form of Waldenstrom macroglobulinemia revealed by tetraparesia].
    Youinou P; Le Goff P; Le Roy JP; Le Menn G
    Sem Hop; 1976 Nov; 52(39):2231-4. PubMed ID: 186902
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.