These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6743664)

  • 1. Resonance Raman characterization of a novel, oxygen-binding heme protein from Chromatium vinosum.
    Ondrias MR; Findsen EW; Gaul DF; Knaff DB
    Biochim Biophys Acta; 1984 Jul; 788(1):87-97. PubMed ID: 6743664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and kinetic properties of an oxygen-binding heme protein from Chromatium vinosum.
    Gaul DF; Ondrias MR; Findsen EW; Palmer G; Olson JS; Davidson MW; Knaff DB
    J Biol Chem; 1987 Jan; 262(3):1144-7. PubMed ID: 3027081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and ligand-binding properties of an oxygen-binding heme protein from Chromatium vinosum.
    Gaul DF; Davidson MW; Palmer G; Shaw RW; Knaff DB
    Biochim Biophys Acta; 1988 Apr; 953(3):226-31. PubMed ID: 3355839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman characterization of Chromatium vinosum cytochrome c'. Effect of pH and comparison of equilibrium and photolyzed carbon monoxide species.
    Hobbs JD; Larsen RW; Meyer TE; Hazzard JH; Cusanovich MA; Ondrias MR
    Biochemistry; 1990 May; 29(17):4166-74. PubMed ID: 2163273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman examination of axial ligand bonding and spin-state equilibria in metmyoglobin hydroxide and other heme derivatives.
    Asher SA; Schuster TM
    Biochemistry; 1979 Nov; 18(24):5377-87. PubMed ID: 518843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore interactions in flavocytochrome c552: a resonance Raman investigation.
    Ondrias MR; Findsen EW; Leroi GE; Babcock GT
    Biochemistry; 1980 Apr; 19(9):1723-30. PubMed ID: 6246931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopy as a probe of heme protein structure and dynamics.
    Spiro TG
    Adv Protein Chem; 1985; 37():111-59. PubMed ID: 2998161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes.
    Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR
    Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic studies of the four-iron high-potential, non-heme protein from Chromatium vinosum.
    Antanaitis BC; Moss TH
    Biochim Biophys Acta; 1975 Oct; 405(2):262-79. PubMed ID: 170982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL.
    Rodgers KR; Lukat-Rodgers GS; Barron JA
    Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 2. Fe4S4 cluster vibrational modes.
    Madden JF; Han SH; Siegel LM; Spiro TG
    Biochemistry; 1989 Jun; 28(13):5471-7. PubMed ID: 2673347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and characterization of Chromatium vinosum cytochrome c'.
    McRee DE; Redford SM; Meyer TE; Cusanovich MA
    J Biol Chem; 1990 Apr; 265(10):5364-5. PubMed ID: 2156816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of flavocytochrome C552 from the thermophilic photosynthetic bacterium Chromatium tepidum.
    Garcia Castillo MC; Lou BS; Ondrias MR; Robertson DE; Knaff DB
    Arch Biochem Biophys; 1994 Dec; 315(2):262-6. PubMed ID: 7986066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protoheme conformations in low-spin ferrohemoproteins. Resonance Raman spectroscopy.
    Desbois A; Lutz M; Banerjee R
    Biochim Biophys Acta; 1981 Dec; 671(2):184-92. PubMed ID: 7198917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman spectra of the heme in leghemoglobin. Evidence for the absence of ruffling and the influence of the vinyl groups.
    Rousseau DL; Ondrias MR; LaMar GN; Kong SB; Smith KM
    J Biol Chem; 1983 Feb; 258(3):1740-6. PubMed ID: 6681610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman studies of Escherichia coli sulfite reductase hemoprotein. 1. Siroheme vibrational modes.
    Han SH; Madden JF; Thompson RG; Strauss SH; Siegel LM; Spiro TG
    Biochemistry; 1989 Jun; 28(13):5461-71. PubMed ID: 2673346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Role of the Heme Distal and Proximal Environment in Ligand Dynamics in the Signal Transducer Protein HemAT by Time-Resolved Step-Scan FTIR and Resonance Raman Spectroscopy.
    Pavlou A; Loullis A; Yoshimura H; Aono S; Pinakoulaki E
    Biochemistry; 2017 Oct; 56(40):5309-5317. PubMed ID: 28876054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.