These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Resonance Raman spectroscopy as a probe of heme protein structure and dynamics. Spiro TG Adv Protein Chem; 1985; 37():111-59. PubMed ID: 2998161 [TBL] [Abstract][Full Text] [Related]
8. Resonance Raman investigation of the effects of copper binding to iron-mesoporphyrin.histidine-rich glycoprotein complexes. Larsen RW; Nunez DJ; Morgan WT; Muhoberac BB; Ondrias MR Biophys J; 1992 Apr; 61(4):1007-17. PubMed ID: 1581496 [TBL] [Abstract][Full Text] [Related]
9. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A. Peterson ES; Friedman JM Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755 [TBL] [Abstract][Full Text] [Related]
10. Magnetic studies of the four-iron high-potential, non-heme protein from Chromatium vinosum. Antanaitis BC; Moss TH Biochim Biophys Acta; 1975 Oct; 405(2):262-79. PubMed ID: 170982 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL. Rodgers KR; Lukat-Rodgers GS; Barron JA Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735 [TBL] [Abstract][Full Text] [Related]
13. Crystallization and characterization of Chromatium vinosum cytochrome c'. McRee DE; Redford SM; Meyer TE; Cusanovich MA J Biol Chem; 1990 Apr; 265(10):5364-5. PubMed ID: 2156816 [TBL] [Abstract][Full Text] [Related]
14. Characterization of flavocytochrome C552 from the thermophilic photosynthetic bacterium Chromatium tepidum. Garcia Castillo MC; Lou BS; Ondrias MR; Robertson DE; Knaff DB Arch Biochem Biophys; 1994 Dec; 315(2):262-6. PubMed ID: 7986066 [TBL] [Abstract][Full Text] [Related]
15. Protoheme conformations in low-spin ferrohemoproteins. Resonance Raman spectroscopy. Desbois A; Lutz M; Banerjee R Biochim Biophys Acta; 1981 Dec; 671(2):184-92. PubMed ID: 7198917 [TBL] [Abstract][Full Text] [Related]
16. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Peterson ES; Friedman JM; Chien EY; Sligar SG Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545 [TBL] [Abstract][Full Text] [Related]
17. Resonance Raman spectra of the heme in leghemoglobin. Evidence for the absence of ruffling and the influence of the vinyl groups. Rousseau DL; Ondrias MR; LaMar GN; Kong SB; Smith KM J Biol Chem; 1983 Feb; 258(3):1740-6. PubMed ID: 6681610 [TBL] [Abstract][Full Text] [Related]
19. Probing the Role of the Heme Distal and Proximal Environment in Ligand Dynamics in the Signal Transducer Protein HemAT by Time-Resolved Step-Scan FTIR and Resonance Raman Spectroscopy. Pavlou A; Loullis A; Yoshimura H; Aono S; Pinakoulaki E Biochemistry; 2017 Oct; 56(40):5309-5317. PubMed ID: 28876054 [TBL] [Abstract][Full Text] [Related]
20. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins. Kitagawa T; Ozaki Y; Kyogoku Y Adv Biophys; 1978; 11():153-96. PubMed ID: 27953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]