These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6743664)

  • 21. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The hemoprotein content of Chromatium sp. strain D.
    Morita S; Gibson J; Edwards ML
    Biochim Biophys Acta; 1970 Sep; 216(2):384-91. PubMed ID: 5504633
    [No Abstract]   [Full Text] [Related]  

  • 23. Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum.
    van der Zwaan JW; Coremans JM; Bouwens EC; Albracht SP
    Biochim Biophys Acta; 1990 Nov; 1041(2):101-10. PubMed ID: 2176104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response of the local heme environment of (carbonmonoxy)hemoglobin to protein dehydration.
    Findsen EW; Simons P; Ondrias MR
    Biochemistry; 1986 Dec; 25(24):7912-7. PubMed ID: 3801449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A resonance Raman study of Ambystoma tigrinum hemoglobins: evidence for intraspecies hemepocket variations.
    Ondrias MR; Carson SD; Wood SC; Shelnutt JA
    Comp Biochem Physiol B; 1984; 79(4):637-42. PubMed ID: 6518767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of altered protein-heme interactions on the resonance Raman spectra of heme proteins. Studies of heme rotational disorder.
    Rwere F; Mak PJ; Kincaid JR
    Biopolymers; 2008 Mar; 89(3):179-86. PubMed ID: 18008322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with Resonance raman spectroscopy.
    Deinum G; Stone JR; Babcock GT; Marletta MA
    Biochemistry; 1996 Feb; 35(5):1540-7. PubMed ID: 8634285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible absorption spectra of quantum mixed-spin ferric heme proteins.
    Maltempo MM
    Biochim Biophys Acta; 1976 Jun; 434(2):513-8. PubMed ID: 182223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron spin resonance characterization of Chromatium D hemes, non-heme irons and the components involved in primary photochemistry.
    Dutton PL; Leigh JS
    Biochim Biophys Acta; 1973 Aug; 314(2):178-90. PubMed ID: 4355789
    [No Abstract]   [Full Text] [Related]  

  • 31. Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy.
    Jin Y; Nagai M; Nagai Y; Nagatomo S; Kitagawa T
    Biochemistry; 2004 Jul; 43(26):8517-27. PubMed ID: 15222763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resonance Raman spectroscopy of chemically modified hemoglobins.
    Bruzzese FJ; Dix JA; Rava RP; Cerny LC
    Biomater Artif Cells Artif Organs; 1990; 18(2):143-56. PubMed ID: 2369642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance Raman characterization of the 7-ns photoproduct of (carbonmonoxy)hemoglobin: implications for hemoglobin dynamics.
    Dasgupta S; Spiro TG
    Biochemistry; 1986 Oct; 25(20):5941-8. PubMed ID: 3790496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic studies of Chromatium flavocytochrome C552. A mechanism for heme-flavin interaction.
    Strekas TC
    Biochim Biophys Acta; 1976 Sep; 446(1):179-91. PubMed ID: 9997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EPR studies of protein state transitions in Chromatium ferricytochrome c'.
    Maltempo MM
    Biochim Biophys Acta; 1975 Jan; 379(1):95-102. PubMed ID: 234758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin.
    Nicoletti FP; Droghetti E; Howes BD; Bustamante JP; Bonamore A; Sciamanna N; Estrin DA; Feis A; Boffi A; Smulevich G
    Biochim Biophys Acta; 2013 Sep; 1834(9):1901-9. PubMed ID: 23467007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.
    Kruglik SG; Jasaitis A; Hola K; Yamashita T; Liebl U; Martin JL; Vos MH
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7408-13. PubMed ID: 17446273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen-bond interactions of the primary donor of the photosynthetic purple sulfur bacterium Chromatium tepidum.
    Ivancich A; Kobayashi M; Drepper F; Fathir I; Saito T; Nozawa T; Mattioli TA
    Biochemistry; 1996 Aug; 35(32):10529-38. PubMed ID: 8756709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into heme-based O2 sensing from structure-function relationships in the FixL proteins.
    Rodgers KR; Lukat-Rodgers GS
    J Inorg Biochem; 2005 Apr; 99(4):963-77. PubMed ID: 15811514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen-sensing mechanism of HemAT from Bacillus subtilis: a resonance Raman spectroscopic study.
    Ohta T; Yoshimura H; Yoshioka S; Aono S; Kitagawa T
    J Am Chem Soc; 2004 Nov; 126(46):15000-1. PubMed ID: 15547976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.