These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 6743701)

  • 21. The enthalpimetric determination of inhibition constants for the inhibition of urease by acetohydroxamic acid.
    Zaborska W; Leszko M; Kot M; Juszkiewicz A
    Acta Biochim Pol; 1997; 44(1):89-98. PubMed ID: 9241359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic analysis of enzyme inhibition by substrate depletion.
    Cortese JD; Vidal JC
    Acta Physiol Lat Am; 1981; 31(3):161-71. PubMed ID: 7187587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advantages of continuous over batch reactors for the kinetic analysis of enzymes inhibited by an unknown substrate impurity.
    Gallifuoco A; Alfani F; Cantarella M
    Biotechnol Bioeng; 2002 Sep; 79(6):641-6. PubMed ID: 12209811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rigorous determination of the Hill coefficient of non-Michaelian substrate-inhibited enzymes.
    Bounias M
    Biochem Int; 1988 Jul; 17(1):147-54. PubMed ID: 3190712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of slow-binding enzyme inhibitors at elevated enzyme concentrations.
    Perdicakis B; Montgomery HJ; Guillemette JG; Jervis E
    Anal Biochem; 2005 Feb; 337(2):211-23. PubMed ID: 15691501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of enzymes with iso-mechanisms: solvent isotope effects.
    Northrop DB; Rebholz KL
    Arch Biochem Biophys; 1997 Jun; 342(2):317-21. PubMed ID: 9186493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Analysis of a simple open biochemical reaction S leads to P by means of E interacting with an enzyme-producing system].
    Sel'kov EE; Nazarenko VG
    Biofizika; 1980; 25(6):1006-10. PubMed ID: 7448210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Simple kinetic models explaining critical phenomena in enzymatic reactions with isomerization of the enzyme and substrate].
    Gol'dshteĭn BN; Ivanova AN
    Mol Biol (Mosk); 1988; 22(5):1381-92. PubMed ID: 3221858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of enzyme inhibitory mechanisms from steady-state kinetics.
    Fange D; Lovmar M; Pavlov MY; Ehrenberg M
    Biochimie; 2011 Sep; 93(9):1623-9. PubMed ID: 21689716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released.
    Monasterio O; Cárdenas ML
    Biochem J; 2003 Apr; 371(Pt 1):29-38. PubMed ID: 12513690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quasi-steady-state laws in enzyme kinetics.
    Li B; Shen Y; Li B
    J Phys Chem A; 2008 Mar; 112(11):2311-21. PubMed ID: 18303867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Kinetic model and mechanism of regulation of a multienzyme system of thromboxane synthesis].
    Varfolomeev SD; Gachok VP; Mevkh AT
    Mol Biol (Mosk); 1985; 19(6):1648-60. PubMed ID: 3935913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Regulation processes in biological systems. I. General principles and enzymatic control mechanisms].
    Floridi A
    Acta Vitaminol Enzymol; 1976; 30(3):58-96. PubMed ID: 1037469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface enzyme kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts.
    Lee HJ; Wark AW; Goodrich TT; Fang S; Corn RM
    Langmuir; 2005 Apr; 21(9):4050-7. PubMed ID: 15835973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dihydrodipicolinate synthase from Escherichia coli: pH dependent changes in the kinetic mechanism and kinetic mechanism of allosteric inhibition by L-lysine.
    Karsten WE
    Biochemistry; 1997 Feb; 36(7):1730-9. PubMed ID: 9048556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques.
    Grant BD; Adams JA
    Biochemistry; 1996 Feb; 35(6):2022-9. PubMed ID: 8639687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Possible mechanism of cooperative control in polyenzyme systems].
    Kaler VL; Fridliand LE
    Mol Biol (Mosk); 1978; 12(2):421-8. PubMed ID: 651880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite concentration effects on diffusion-controlled reactions.
    Senapati S; Wong CF; McCammon JA
    J Chem Phys; 2004 Oct; 121(16):7896-900. PubMed ID: 15485251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Practical steady-state enzyme kinetics.
    Lorsch JR
    Methods Enzymol; 2014; 536():3-15. PubMed ID: 24423262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Enzymatic conversion of polymers. Nature of apparent product inhibition in the course of enzymatic degradation of polymer substrates].
    Klesov AA; Parbuzin VS; Rabinovich ML
    Biokhimiia; 1981 Oct; 46(10):1840-6. PubMed ID: 6796131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.