These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 6743794)
1. Encounters in predator-prey systems: a simple discrete model. Voit EO Biosystems; 1984; 17(1):57-63. PubMed ID: 6743794 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators. Walzer A; Moder K; Schausberger P Bull Entomol Res; 2009 Oct; 99(5):457-66. PubMed ID: 19159502 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of plant species on a mite pest (Tetranychus utricae) and its predator (Phytoseiulus persimilis): implications for biological control. Skirvin DJ; de Courcy Williams M Exp Appl Acarol; 1999 Jun; 23(6):497-512. PubMed ID: 10466216 [TBL] [Abstract][Full Text] [Related]
4. Social familiarity governs prey patch-exploitation, -leaving and inter-patch distribution of the group-living predatory mite Phytoseiulus persimilis. Zach GJ; Peneder S; Strodl MA; Schausberger P PLoS One; 2012; 7(8):e42889. PubMed ID: 22900062 [TBL] [Abstract][Full Text] [Related]
5. Do herbivore-induced plant volatiles influence predator migration and local dynamics of herbivorous and predatory mites? Pels B; Sabelis MW Exp Appl Acarol; 2000; 24(5-6):427-40. PubMed ID: 11156167 [TBL] [Abstract][Full Text] [Related]
7. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days. Nachappa P; Margolies DC; Nechols JR; Loughin T Exp Appl Acarol; 2006; 40(3-4):231-9. PubMed ID: 17225078 [TBL] [Abstract][Full Text] [Related]
8. Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size? Rosenheim JA; Limburg DD; Colfer RG; Fournier V; Hsu CL; Leonardo TE; Nelson EH Oecologia; 2004 Aug; 140(4):577-85. PubMed ID: 15278424 [TBL] [Abstract][Full Text] [Related]
9. The effects of prey patchiness, predator aggregation, and mutual interference on the functional response of Phytoseiulus persimilis feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Nachman G Exp Appl Acarol; 2006; 38(2-3):87-111. PubMed ID: 16596345 [TBL] [Abstract][Full Text] [Related]
10. Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control. Skirvin DJ; Fenlon JS Bull Entomol Res; 2001 Feb; 91(1):61-7. PubMed ID: 11228589 [TBL] [Abstract][Full Text] [Related]
11. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Cakmak I; Janssen A; Sabelis MW Exp Appl Acarol; 2006; 38(1):33-46. PubMed ID: 16550333 [TBL] [Abstract][Full Text] [Related]
12. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Martín-Fernández L; Gilioli G; Lanzarone E; Miguez J; Pasquali S; Ruggeri F; Ruiz DP Math Biosci Eng; 2014 Jun; 11(3):573-97. PubMed ID: 24506552 [TBL] [Abstract][Full Text] [Related]
13. A functional response model of a predator population foraging in a patchy habitat. Nachman G J Anim Ecol; 2006 Jul; 75(4):948-58. PubMed ID: 17009758 [TBL] [Abstract][Full Text] [Related]
14. Prey exploitation and dispersal strategies vary among natural populations of a predatory mite. Revynthi AM; Egas M; Janssen A; Sabelis MW Ecol Evol; 2018 Nov; 8(21):10384-10394. PubMed ID: 30464812 [TBL] [Abstract][Full Text] [Related]
15. Pre-adult development of Phytoseiulus persimilis on diets of Tetranychus urticae and Tetranychus lintearius: implications for the biological control of Ulex europaeus. Davies JT; Ireson JE; Allen GR Exp Appl Acarol; 2009 Feb; 47(2):133-45. PubMed ID: 18923915 [TBL] [Abstract][Full Text] [Related]
16. Adaptation of an arthropod predator to a challenging environment is associated with a loss of a genome-wide plastic transcriptional response. Bajda SA; Wybouw N; Nguyễn VH; De Clercq P; Van Leeuwen T Pest Manag Sci; 2024 Apr; 80(4):2021-2031. PubMed ID: 38110295 [TBL] [Abstract][Full Text] [Related]
17. Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues. Gyuris E; Szép E; Kontschán J; Hettyey A; Tóth Z Behav Processes; 2017 Nov; 144():100-106. PubMed ID: 28882653 [TBL] [Abstract][Full Text] [Related]
18. Intraguild interactions among three spider mite predators: predation preference and effects on juvenile development and oviposition. Rahmani H; Daneshmandi A; Walzer A Exp Appl Acarol; 2015 Dec; 67(4):493-505. PubMed ID: 26462926 [TBL] [Abstract][Full Text] [Related]
19. Artificial selection for timing of dispersal in predatory mites yields lines that differ in prey exploitation strategies. Revynthi AM; Verkleij D; Janssen A; Egas M Ecol Evol; 2022 Mar; 12(3):e8760. PubMed ID: 35356587 [TBL] [Abstract][Full Text] [Related]
20. Interactions between natural enemies: Effect of a predatory mite on transmission of the fungus Neozygites floridana in two-spotted spider mite populations. Trandem N; Berdinesen R; Pell JK; Klingen I J Invertebr Pathol; 2016 Feb; 134():35-37. PubMed ID: 26796096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]