These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 6744123)
1. Structure and properties of the phosphoenolpyruvate: glucose phosphotransferase system of oral streptococci. Vadeboncoeur C Can J Microbiol; 1984 Apr; 30(4):495-502. PubMed ID: 6744123 [TBL] [Abstract][Full Text] [Related]
2. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture. Vadeboncoeur C; Thibault L; Neron S; Halvorson H; Hamilton IR J Bacteriol; 1987 Dec; 169(12):5686-91. PubMed ID: 3680174 [TBL] [Abstract][Full Text] [Related]
3. Distribution of proteins similar to IIIManH and IIIManL of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria. Pelletier M; Frenette M; Vadeboncoeur C J Bacteriol; 1995 May; 177(9):2270-5. PubMed ID: 7730253 [TBL] [Abstract][Full Text] [Related]
4. The phosphoenolpyruvate: sugar phosphotransferase system of Streptococcus salivarius. Identification of a IIIman protein. Vadeboncoeur C; Gauthier L Can J Microbiol; 1987 Feb; 33(2):118-22. PubMed ID: 3580966 [TBL] [Abstract][Full Text] [Related]
5. Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIman, a component of the phosphoenolpyruvate:mannose phosphotransferase system. Bourassa S; Vadeboncoeur C J Gen Microbiol; 1992 Apr; 138(4):769-77. PubMed ID: 1534118 [TBL] [Abstract][Full Text] [Related]
6. Control of sugar utilization in the oral bacteria Streptococcus salivarius and Streptococcus sanguis by the phosphoenolpyruvate: glucose phosphotransferase system. Vadeboncoeur C; Bourgeau G; Mayrand D; Trahan L Arch Oral Biol; 1983; 28(2):123-31. PubMed ID: 6575744 [TBL] [Abstract][Full Text] [Related]
7. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. Vadeboncoeur C; Pelletier M FEMS Microbiol Rev; 1997 Feb; 19(3):187-207. PubMed ID: 9050218 [TBL] [Abstract][Full Text] [Related]
8. Control of sugar utilization in oral streptococci. Properties of phenotypically distinct 2-deoxyglucose-resistant mutants of Streptococcus salivarius. Gauthier L; Bourassa S; Brochu D; Vadeboncoeur C Oral Microbiol Immunol; 1990 Dec; 5(6):352-9. PubMed ID: 2098716 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of enzymes involved in glucose phosphorylation in oral streptococci. Vadeboncoeur C; Mayrand D; Trahan L J Dent Res; 1982 Jan; 61(1):60-5. PubMed ID: 6948019 [TBL] [Abstract][Full Text] [Related]
10. Diversity of Streptococcus salivarius ptsH mutants that can be isolated in the presence of 2-deoxyglucose and galactose and characterization of two mutants synthesizing reduced levels of HPr, a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase system. Thomas S; Brochu D; Vadeboncoeur C J Bacteriol; 2001 Sep; 183(17):5145-54. PubMed ID: 11489868 [TBL] [Abstract][Full Text] [Related]
11. Effect of growth rate and pH on intracellular levels and activities of the components of the phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus mutans Ingbritt. Vadeboncoeur C; St Martin S; Brochu D; Hamilton IR Infect Immun; 1991 Mar; 59(3):900-6. PubMed ID: 1997439 [TBL] [Abstract][Full Text] [Related]
12. Effect of nutritional constraints on the biosynthesis of the components of the phosphoenolpyruvate: sugar phosphotransferase system in a fresh isolate of Streptococcus mutans. Rodrigue L; Lacoste L; Trahan L; Vadeboncoeur C Infect Immun; 1988 Feb; 56(2):518-22. PubMed ID: 3338847 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius. Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156 [TBL] [Abstract][Full Text] [Related]
14. Replacement of isoleucine-47 by threonine in the HPr protein of Streptococcus salivarius abrogates the preferential metabolism of glucose and fructose over lactose and melibiose but does not prevent the phosphorylation of HPr on serine-46. Gauthier M; Brochu D; Eltis LD; Thomas S; Vadeboncoeur C Mol Microbiol; 1997 Aug; 25(4):695-705. PubMed ID: 9379899 [TBL] [Abstract][Full Text] [Related]
15. The phosphoenolpyruvate:mannose phosphotransferase system of Streptococcus salivarius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man). Pelletier M; Lortie LA; Frenette M; Vadeboncoeur C Biochemistry; 1998 Feb; 37(6):1604-12. PubMed ID: 9484231 [TBL] [Abstract][Full Text] [Related]
16. Concentration-dependent repression of the soluble and membrane components of the Streptococcus mutans phosphoenolpyruvate: sugar phosphotransferase system by glucose. Hamilton IR; Gauthier L; Desjardins B; Vadeboncoeur C J Bacteriol; 1989 Jun; 171(6):2942-8. PubMed ID: 2722738 [TBL] [Abstract][Full Text] [Related]
17. Phosphoenolpyruvate-sugar phosphotransferase transport system of Streptococcus mutans: purification of HPr and enzyme I and determination of their intracellular concentrations by rocket immunoelectrophoresis. Thibault L; Vadeboncoeur C Infect Immun; 1985 Dec; 50(3):817-25. PubMed ID: 4066033 [TBL] [Abstract][Full Text] [Related]
18. Emergence of multiple xylitol-resistant (fructose PTS-) mutants from human isolates of mutans streptococci during growth on dietary sugars in the presence of xylitol. Trahan L; Bourgeau G; Breton R J Dent Res; 1996 Nov; 75(11):1892-900. PubMed ID: 9003237 [TBL] [Abstract][Full Text] [Related]
19. Coordinated Regulation of the EII Zeng L; Chakraborty B; Farivar T; Burne RA Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821551 [TBL] [Abstract][Full Text] [Related]
20. Transport of glucose and mannose by a common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5. Liberman ES; Bleiweis AS Infect Immun; 1984 Mar; 43(3):1106-9. PubMed ID: 6698606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]