These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 6745347)

  • 1. EMG patterns in antagonist muscles during isometric contraction in man: relations to response dynamics.
    Gordon J; Ghez C
    Exp Brain Res; 1984; 55(1):167-71. PubMed ID: 6745347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trajectory control in targeted force impulses. I. Role of opposing muscles.
    Ghez C; Gordon J
    Exp Brain Res; 1987; 67(2):225-40. PubMed ID: 3622686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):253-69. PubMed ID: 3622688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of combined variation of force amplitude and rate of force development on the modulation characteristics of muscle activation during rapid isometric aiming force production.
    Park JH; Stelmach GE
    Exp Brain Res; 2006 Jan; 168(3):337-47. PubMed ID: 16328255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fatigability of two agonistic muscles in human isometric voluntary submaximal contraction: an EMG study. II. Motor unit firing rate and recruitment.
    Maton B; Gamet D
    Eur J Appl Physiol Occup Physiol; 1989; 58(4):369-74. PubMed ID: 2920715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1992 Aug; 68(2):449-70. PubMed ID: 1527569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of rapid limb movement in the cat. II. Scaling of isometric force adjustments.
    Ghez C; Vicario D
    Exp Brain Res; 1978 Oct; 33(2):191-202. PubMed ID: 700005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of tendon vibration on motor unit activity, intermuscular coherence and force steadiness in the elbow flexors of males and females.
    Harwood B; Cornett KM; Edwards DL; Brown RE; Jakobi JM
    Acta Physiol (Oxf); 2014 Aug; 211(4):597-608. PubMed ID: 24888350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectory control in targeted force impulses. II. Pulse height control.
    Gordon J; Ghez C
    Exp Brain Res; 1987; 67(2):241-52. PubMed ID: 3622687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attempted rapid elbow flexion movements in patients with athetosis.
    Hallett M; Alvarez N
    J Neurol Neurosurg Psychiatry; 1983 Aug; 46(8):745-50. PubMed ID: 6886719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrally programmed patterns of muscle activity in voluntary motor behavior of humans.
    Sanes JN; Jennings VA
    Exp Brain Res; 1984; 54(1):23-32. PubMed ID: 6698146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of stereotyped voluntary movements at the elbow in patients with Parkinson's disease.
    Hallett M; Shahani BT; Young RR
    J Neurol Neurosurg Psychiatry; 1977 Dec; 40(12):1129-35. PubMed ID: 591980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of synergic relations during isometric contractions of human elbow muscles.
    Buchanan TS; Almdale DP; Lewis JL; Rymer WZ
    J Neurophysiol; 1986 Nov; 56(5):1225-41. PubMed ID: 3794767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of multiple muscles in two degree of freedom elbow movements.
    Sergio LE; Ostry DJ
    Exp Brain Res; 1995; 105(1):123-37. PubMed ID: 7589309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the tendency of motor unit recruitment during steady-hold and rapid contractions using surface EMG and Turns-amplitude analysis.
    Pan LL; Yu CH; Tsai MW; Wei SH; Chou LW
    Eur J Appl Physiol; 2015 Nov; 115(11):2407-14. PubMed ID: 26202486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.
    Riley ZA; Terry ME; Mendez-Villanueva A; Litsey JC; Enoka RM
    Muscle Nerve; 2008 Jun; 37(6):745-53. PubMed ID: 18288713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models of recruitment and rate coding organization in motor-unit pools.
    Fuglevand AJ; Winter DA; Patla AE
    J Neurophysiol; 1993 Dec; 70(6):2470-88. PubMed ID: 8120594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from slow to ballistic movement: development of triphasic electromyogram patterns.
    Brown JM; Gilleard W
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):381-6. PubMed ID: 1773816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.