These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6746429)

  • 41. Temporal representation of rippled noise in the anteroventral cochlear nucleus of the chinchilla.
    Shofner WP
    J Acoust Soc Am; 1991 Nov; 90(5):2450-66. PubMed ID: 1774414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stationary noise responses in a nonlinear model of cochlear mechanics: iterative solutions in the frequency domain.
    Liu YW
    J Acoust Soc Am; 2014 Oct; 136(4):1788-96. PubMed ID: 25324080
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Marginal shell of the anteroventral cochlear nucleus: single-unit response properties in the unanesthetized decerebrate cat.
    Ghoshal S; Kim DO
    J Neurophysiol; 1997 Apr; 77(4):2083-97. PubMed ID: 9114257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones.
    Javel E
    J Acoust Soc Am; 1980 Jul; 68(1):133-46. PubMed ID: 7391355
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of medial olivocochlear neurons. Specifying the central pathways of the medial olivocochlear reflex.
    Brown MC; de Venecia RK; Guinan JJ
    Exp Brain Res; 2003 Dec; 153(4):491-8. PubMed ID: 14557911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Marginal shell of the anteroventral cochlear nucleus: intensity coding in single units of the unanesthetized, decerebrate cat.
    Ghoshal S; Kim DO
    Neurosci Lett; 1996 Feb; 205(2):71-4. PubMed ID: 8907319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intensity coding in the auditory periphery of the cat: responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise.
    Palmer AR; Evans EF
    Hear Res; 1982 Aug; 7(3):305-23. PubMed ID: 7118733
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail.
    Joris PX; Smith PH; Yin TC
    J Neurophysiol; 1994 Mar; 71(3):1037-51. PubMed ID: 8201400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Postnatal functional development of the dorsal and posteroventral cochlear nuclei of the cat.
    Brugge JF; O'Connor TA
    J Acoust Soc Am; 1984 May; 75(5):1548-62. PubMed ID: 6736417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. System analysis of Phycomyces light-growth response with Gaussian white noise and sum-of-sinusoids test stimuli.
    Lipson E; Pratap P
    Ann Biomed Eng; 1988; 16(1):95-109. PubMed ID: 3408054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectral integration by type II interneurons in dorsal cochlear nucleus.
    Spirou GA; Davis KA; Nelken I; Young ED
    J Neurophysiol; 1999 Aug; 82(2):648-63. PubMed ID: 10444663
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temporal response features of cat auditory cortex neurons contributing to sensitivity to tones delivered in the presence of continuous noise.
    Phillips DP
    Hear Res; 1985; 19(3):253-68. PubMed ID: 4066524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spike-rate intensity functions of cat cortical neurons studied with combined tone-noise stimuli.
    Phillips DP; Hall SE
    J Acoust Soc Am; 1986 Jul; 80(1):177-87. PubMed ID: 3745663
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonlinearities of the human ERG reflected by Wiener kernels.
    Koblasz AJ
    Biol Cybern; 1978 Dec; 31(4):187-91. PubMed ID: 737204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Responses of peripheral auditory neurons to two-tone stimuli during development: III. Rate facilitation.
    Fitzakerley JL; McGee JA; Walsh EJ
    Hear Res; 1994 Jun; 77(1-2):162-7. PubMed ID: 7928727
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors shaping the tone level sensitivity of single neurons in posterior field of cat auditory cortex.
    Phillips DP; Semple MN; Kitzes LM
    J Neurophysiol; 1995 Feb; 73(2):674-86. PubMed ID: 7760126
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat.
    Rhode WS; Kettner RE
    J Neurophysiol; 1987 Feb; 57(2):414-42. PubMed ID: 3559686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal properties of responses to broadband noise in the auditory nerve.
    Louage DH; van der Heijden M; Joris PX
    J Neurophysiol; 2004 May; 91(5):2051-65. PubMed ID: 15069097
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-correlation analyses of nonlinear systems with spatiotemporal inputs.
    Chen HW; Jacobson LD; Gaska JP; Pollen DA
    IEEE Trans Biomed Eng; 1993 Nov; 40(11):1102-13. PubMed ID: 8307593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.