These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 6746570)
61. ATP synthesis is driven by an imposed delta pH or delta mu H+ but not by an imposed delta pNa+ or delta mu Na+ in alkalophilic Bacillus firmus OF4 at high pH. Guffanti AA; Krulwich TA J Biol Chem; 1988 Oct; 263(29):14748-52. PubMed ID: 2902088 [TBL] [Abstract][Full Text] [Related]
62. Protonmotive force and catecholamine transport in isolated chromaffin granules. Johnson RG; Scarpa A J Biol Chem; 1979 May; 254(10):3750-60. PubMed ID: 438157 [TBL] [Abstract][Full Text] [Related]
63. Influence of ion gradients on the transbilayer distribution of dibucaine in large unilamellar vesicles. Mayer LD; Wong KF; Menon K; Chong C; Harrigan PR; Cullis PR Biochemistry; 1988 Mar; 27(6):2053-60. PubMed ID: 3378044 [TBL] [Abstract][Full Text] [Related]
64. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles. Cohn DE; Kaczorowski GJ; Kaback HR Biochemistry; 1981 May; 20(11):3308-13. PubMed ID: 7018574 [TBL] [Abstract][Full Text] [Related]
65. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase. Moroney PM; Scholes TA; Hinkle PC Biochemistry; 1984 Oct; 23(21):4991-7. PubMed ID: 6093868 [TBL] [Abstract][Full Text] [Related]
66. Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium. Hirata H; Sone N; Yoshida M; Kagawa Y J Biochem; 1976 Jun; 79(6):1157-66. PubMed ID: 8439 [TBL] [Abstract][Full Text] [Related]
67. Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles. Letellier L; Shechter E Eur J Biochem; 1979 Dec; 102(2):441-7. PubMed ID: 118877 [TBL] [Abstract][Full Text] [Related]
68. Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts. Johnson RG; Carty SE; Scarpa A J Biol Chem; 1981 Jun; 256(11):5773-80. PubMed ID: 7240171 [TBL] [Abstract][Full Text] [Related]
69. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. Hell JW; Maycox PR; Jahn R J Biol Chem; 1990 Feb; 265(4):2111-7. PubMed ID: 1688846 [TBL] [Abstract][Full Text] [Related]
70. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients. Johnson RG; Pfister D; Carty SE; Scarpa A J Biol Chem; 1979 Nov; 254(21):10963-72. PubMed ID: 40978 [TBL] [Abstract][Full Text] [Related]
71. The proton electrochemical gradient in Escherichia coli cells. Padan E; Zilberstein D; Rottenberg H Eur J Biochem; 1976 Apr; 63(2):533-41. PubMed ID: 4325 [TBL] [Abstract][Full Text] [Related]
72. Kinetic properties of Na(+) -H(+) antiport in Escherichia coli membrane vesicles: Effects of imposed electrical potential, proton gradient, and internal pH. Bassilana M; Damiano E; Leblanc G Biochemistry; 1984 Oct; 23(22):5288-94. PubMed ID: 21128368 [TBL] [Abstract][Full Text] [Related]
73. Some novel aspects of the relationship between the amino acid gradient and the sodium electrochemical gradient in mouse ascites tumour cells. Eddy AA; Hopkins P; Johnson E Biophys Chem; 1988 Feb; 29(1-2):119-25. PubMed ID: 3358997 [TBL] [Abstract][Full Text] [Related]
74. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Bryan LE; Kwan S Antimicrob Agents Chemother; 1983 Jun; 23(6):835-45. PubMed ID: 6351731 [TBL] [Abstract][Full Text] [Related]
75. Glutamate uptake into synaptic vesicles of bovine cerebral cortex and electrochemical potential difference of proton across the membrane. Shioi J; Naito S; Ueda T Biochem J; 1989 Mar; 258(2):499-504. PubMed ID: 2565109 [TBL] [Abstract][Full Text] [Related]
76. The control by delta mu H+ of the tonoplast-bound H+-translocating adenosine triphosphatase from rubber-tree (Hevea brasiliensis) latex. Marin BP Biochem J; 1985 Jul; 229(2):459-67. PubMed ID: 2994636 [TBL] [Abstract][Full Text] [Related]
77. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium. Sone N; Yoshida M; Hirata H; Kagawa Y J Biol Chem; 1977 May; 252(9):2956-60. PubMed ID: 16011 [TBL] [Abstract][Full Text] [Related]
78. [Membrane potential of E. coli recipient cells determines the rate of linear transport of DNA during conjugation]. Berzhinskene IaA; Grinius LL Biokhimiia; 1989 Sep; 54(9):1520-5. PubMed ID: 2686759 [TBL] [Abstract][Full Text] [Related]
79. Quantitative association between electrical potential across the cytoplasmic membrane and early gentamicin uptake and killing in Staphylococcus aureus. Eisenberg ES; Mandel LJ; Kaback HR; Miller MH J Bacteriol; 1984 Mar; 157(3):863-7. PubMed ID: 6698939 [TBL] [Abstract][Full Text] [Related]
80. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis. Kaesler B; Schönheit P Eur J Biochem; 1988 May; 174(1):189-97. PubMed ID: 2897291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]