BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6746587)

  • 1. Sarcophagine (beta-alanyl-L-tyrosine) synthesis in the fat body of Sarcophaga peregrina larvae.
    Kano Y; Natori S
    J Biochem; 1984 Apr; 95(4):1041-6. PubMed ID: 6746587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-alanyl-L-tyrosine. Chemical synthesis, properties and occurrence in larvae of the fleshfly Sarcophaga bullata Parker.
    Levenbook L; Bodnaryk RP; Spande TF
    Biochem J; 1969 Aug; 113(5):837-41. PubMed ID: 5821010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of beta-alanyl-L-tyrosine (sarcophagine) in puparium formation in the fleshfly Sarcophaga bullata.
    Bodnaryk RP; Levenbook L
    Comp Biochem Physiol; 1969 Sep; 30(5):909-21. PubMed ID: 5347606
    [No Abstract]   [Full Text] [Related]  

  • 4. Activation of latent ribonuclease in the fat-body of fleshfly (Sarcophaga peregrina) larvae on pupation.
    Aoki Y; Natori S
    Biochem J; 1981 Jun; 196(3):699-703. PubMed ID: 7317010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of selective phosphorylation of a fat body protein of Sarcophaga peregrina larvae by 20-hydroxyecdysone.
    Itoh K; Ueno K; Natori S
    Biochem J; 1985 Apr; 227(2):683-8. PubMed ID: 4004788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 29-kDa hemocyte proteinase dissociates fat body at metamorphosis of Sarcophaga.
    Kurata S; Saito H; Natori S
    Dev Biol; 1992 Sep; 153(1):115-21. PubMed ID: 1516741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and purification of sulfotransferases for 20-hydroxysteroid from the larval fat body of a fleshfly, Sarcophaga peregrina.
    Matsumoto E; Matsui M; Tamura HO
    Biosci Biotechnol Biochem; 2003 Aug; 67(8):1780-5. PubMed ID: 12951514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synthesis of antibacterial proteins in isolated fat body from Cecropia silkmoth pupae.
    Faye I; Wyatt GR
    Experientia; 1980 Nov; 36(11):1325-6. PubMed ID: 7449923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Participation of a 200-kDa hemocyte membrane protein in the dissociation of the fat body at the metamorphosis of Sarcophaga.
    Kurata S; Kobayashi H; Natori S
    Dev Biol; 1991 Jul; 146(1):179-85. PubMed ID: 2060701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel feature of expression of the sarcotoxin IA gene in development of Sarcophaga peregrina.
    Nanbu R; Nakajima Y; Ando K; Natori S
    Biochem Biophys Res Commun; 1988 Jan; 150(2):540-4. PubMed ID: 3342034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fat-body remodeling in Drosophila melanogaster.
    Nelliot A; Bond N; Hoshizaki DK
    Genesis; 2006 Aug; 44(8):396-400. PubMed ID: 16868920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humoral mediator-dependent activation of the Sarcophaga lectin gene.
    Shiraishi A; Natori S
    FEBS Lett; 1988 May; 232(1):163-6. PubMed ID: 3366243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation of the mRNAs coding for the major hemolymph proteins of Ceratitis capitata in cell-free system: comparison of the translatable mRNA levels to the respective biosynthetic levels of the proteins in the fat body during development.
    Mintzas AC; Chrysanthis G; Christodoulou C; Marmaras VJ
    Dev Biol; 1983 Feb; 95(2):492-6. PubMed ID: 6337889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of two abundant messenger RNAs during development of Sarcophaga peregrina.
    Tamura H; Tahara T; Kuroiwa A; Obinata M; Natori S
    Dev Biol; 1983 Sep; 99(1):145-51. PubMed ID: 6617997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of 30-kDa fat body protein of Sarcophaga peregrina larvae selectively phosphorylated in the presence of 20-hydroxyecdysone as ribosomal protein S6.
    Itoh K; Ueno K; Natori S
    J Biochem; 1986 Aug; 100(2):493-8. PubMed ID: 3782062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the DNase I-hypersensitive site of a developmentally regulated 25-kDa protein gene of Sarcophaga peregrina.
    Shiraishi A; Nakanishi Y; Sekimizu K; Natori S
    J Biol Chem; 1986 Jan; 261(2):940-3. PubMed ID: 3941106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of pupal diapause and photoperiodic sensitivity during early development of Sarcophaga peregrina larvae.
    Kurahashi H; Ohtaki T
    Jpn J Med Sci Biol; 1979 Apr; 32(2):77-82. PubMed ID: 541874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of storage protein receptor and its precursor in the fat body membrane of Sarcophaga peregrina.
    Ueno K; Natori S
    J Biol Chem; 1984 Oct; 259(19):12107-11. PubMed ID: 6480601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of glutathione metabolism in the fat body of Sarcophaga peregrina by integumental injury.
    Sugiyama H; Natori S
    J Biochem; 1994 Nov; 116(5):1171-5. PubMed ID: 7896749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanism of the dissociation of the fat body at the metamorphosis of Sarcophaga peregrina--insect metamorphosis and self-non self recognition].
    Kurata S
    Tanpakushitsu Kakusan Koso; 1992 Feb; 37(2):101-8. PubMed ID: 1546165
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.