These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 6746633)
1. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. Ganapathy V; Burckhardt G; Leibach FH J Biol Chem; 1984 Jul; 259(14):8954-9. PubMed ID: 6746633 [TBL] [Abstract][Full Text] [Related]
2. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. Ganapathy V; Mendicino JF; Leibach FH J Biol Chem; 1981 Jan; 256(1):118-24. PubMed ID: 7451429 [TBL] [Abstract][Full Text] [Related]
3. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. Ganapathy V; Leibach FH J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475 [TBL] [Abstract][Full Text] [Related]
4. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles. Rajendran VM; Ansari SA; Harig JM; Adams MB; Khan AH; Ramaswamy K Gastroenterology; 1985 Dec; 89(6):1298-304. PubMed ID: 4054522 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of glycyl-L-proline transport in intestinal brush-border membrane vesicles. Rajendran VM; Harig JM; Ramaswamy K Am J Physiol; 1987 Feb; 252(2 Pt 1):G281-6. PubMed ID: 3030128 [TBL] [Abstract][Full Text] [Related]
6. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine. Tsuji A; Terasaki T; Tamai I; Hirooka H J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine. Berteloot A; Khan AH; Ramaswamy K Biochim Biophys Acta; 1981 Dec; 649(2):179-88. PubMed ID: 7032591 [TBL] [Abstract][Full Text] [Related]
8. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles. Rajendran VM; Berteloot A; Ramaswamy K Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548 [TBL] [Abstract][Full Text] [Related]
9. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. Inui K; Tomita Y; Katsura T; Okano T; Takano M; Hori R J Pharmacol Exp Ther; 1992 Feb; 260(2):482-6. PubMed ID: 1738097 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. II. Uptake of glycyl-L-leucine. Berteloot A; Khan AH; Ramaswamy K Biochim Biophys Acta; 1982 Mar; 686(1):47-54. PubMed ID: 7066321 [TBL] [Abstract][Full Text] [Related]
11. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles. Wolffram S; Grenacher B; Scharrer E J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of tripeptide transport in human jejunal brush-border membrane vesicles. Wilson D; Barry JA; Ramaswamy K Biochim Biophys Acta; 1989 Nov; 986(1):123-9. PubMed ID: 2819090 [TBL] [Abstract][Full Text] [Related]
14. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system. Hammerman MR; Sacktor B Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661 [TBL] [Abstract][Full Text] [Related]
15. Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine. Takuwa N; Shimada T; Matsumoto H; Himukai M; Hoshi T Jpn J Physiol; 1985; 35(4):629-42. PubMed ID: 4068369 [TBL] [Abstract][Full Text] [Related]
16. Transport of L-leucine hydroxy analogue and L-lactate in rabbit small-intestinal brush-border membrane vesicles. Friedrich M; Murer H; Berger EG Pflugers Arch; 1991 May; 418(4):393-9. PubMed ID: 1876483 [TBL] [Abstract][Full Text] [Related]
17. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential. Daniel H; Morse EL; Adibi SA J Biol Chem; 1991 Oct; 266(30):19917-24. PubMed ID: 1939055 [TBL] [Abstract][Full Text] [Related]
18. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport. Simanjuntak MT; Tamai I; Terasaki T; Tsuji A J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446 [TBL] [Abstract][Full Text] [Related]
19. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles. Miyamoto Y; Ganapathy V; Leibach FH Biochem Biophys Res Commun; 1985 Nov; 132(3):946-53. PubMed ID: 4074356 [TBL] [Abstract][Full Text] [Related]
20. Transport of glycyl-L-proline in intestinal brush-border membrane vesicles of the suckling rat: characteristics and maturation. Said HM; Ghishan FK; Redha R Biochim Biophys Acta; 1988 Jun; 941(2):232-40. PubMed ID: 3382647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]