BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 6746633)

  • 1. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles.
    Ganapathy V; Burckhardt G; Leibach FH
    J Biol Chem; 1984 Jul; 259(14):8954-9. PubMed ID: 6746633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit.
    Ganapathy V; Mendicino JF; Leibach FH
    J Biol Chem; 1981 Jan; 256(1):118-24. PubMed ID: 7451429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline.
    Ganapathy V; Leibach FH
    J Biol Chem; 1983 Dec; 258(23):14189-92. PubMed ID: 6643475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles.
    Rajendran VM; Ansari SA; Harig JM; Adams MB; Khan AH; Ramaswamy K
    Gastroenterology; 1985 Dec; 89(6):1298-304. PubMed ID: 4054522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of glycyl-L-proline transport in intestinal brush-border membrane vesicles.
    Rajendran VM; Harig JM; Ramaswamy K
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G281-6. PubMed ID: 3030128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A; Terasaki T; Tamai I; Hirooka H
    J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1981 Dec; 649(2):179-88. PubMed ID: 7032591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles.
    Rajendran VM; Berteloot A; Ramaswamy K
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes.
    Inui K; Tomita Y; Katsura T; Okano T; Takano M; Hori R
    J Pharmacol Exp Ther; 1992 Feb; 260(2):482-6. PubMed ID: 1738097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. II. Uptake of glycyl-L-leucine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1982 Mar; 686(1):47-54. PubMed ID: 7066321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of tripeptide transport in human jejunal brush-border membrane vesicles.
    Wilson D; Barry JA; Ramaswamy K
    Biochim Biophys Acta; 1989 Nov; 986(1):123-9. PubMed ID: 2819090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system.
    Hammerman MR; Sacktor B
    Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine.
    Takuwa N; Shimada T; Matsumoto H; Himukai M; Hoshi T
    Jpn J Physiol; 1985; 35(4):629-42. PubMed ID: 4068369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of L-leucine hydroxy analogue and L-lactate in rabbit small-intestinal brush-border membrane vesicles.
    Friedrich M; Murer H; Berger EG
    Pflugers Arch; 1991 May; 418(4):393-9. PubMed ID: 1876483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential.
    Daniel H; Morse EL; Adibi SA
    J Biol Chem; 1991 Oct; 266(30):19917-24. PubMed ID: 1939055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT; Tamai I; Terasaki T; Tsuji A
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1985 Nov; 132(3):946-53. PubMed ID: 4074356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of glycyl-L-proline in intestinal brush-border membrane vesicles of the suckling rat: characteristics and maturation.
    Said HM; Ghishan FK; Redha R
    Biochim Biophys Acta; 1988 Jun; 941(2):232-40. PubMed ID: 3382647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.