These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A study of bend formation in locally reactivated hamster sperm flagella. Yeung CH; Woolley DM J Muscle Res Cell Motil; 1983 Dec; 4(6):625-45. PubMed ID: 6668356 [TBL] [Abstract][Full Text] [Related]
3. Evidence for "twisted plane" undulations in golden hamster sperm tails. Woolley DM J Cell Biol; 1977 Dec; 75(3):851-65. PubMed ID: 925084 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional bend propagation in hamster sperm models and the direction of roll in free-swimming cells. Yeung CH; Woolley DM Cell Motil; 1984; 4(3):215-26. PubMed ID: 6744387 [TBL] [Abstract][Full Text] [Related]
5. Localized reactivation of the principal piece of demembranated hamster sperm by iontophoretic application of ATP. Yeung CH; Woolley DM J Submicrosc Cytol; 1983 Jan; 15(1):327-31. PubMed ID: 6842648 [TBL] [Abstract][Full Text] [Related]
6. Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters. Gibbons IR; Gibbons BH J Muscle Res Cell Motil; 1980 Mar; 1(1):31-59. PubMed ID: 7229022 [TBL] [Abstract][Full Text] [Related]
7. Analysis of flagellar bending in hyperactivated hamster and mouse spermatozoa. Aoki F; Ishida K; Okuno M; Kohmoto K J Reprod Fertil; 1994 Jul; 101(2):397-403. PubMed ID: 7932375 [TBL] [Abstract][Full Text] [Related]
8. Regulatory mechanisms of sperm flagellar motility by metachronal and synchronous sliding of doublet microtubules. Takei GL; Fujinoki M; Yoshida K; Ishijima S Mol Hum Reprod; 2017 Dec; 23(12):817-826. PubMed ID: 29040653 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis of flagellar movement in hyperactivated and acrosome-reacted golden hamster spermatozoa. Ishijima S; Baba SA; Mohri H; Suarez SS Mol Reprod Dev; 2002 Mar; 61(3):376-84. PubMed ID: 11835583 [TBL] [Abstract][Full Text] [Related]
10. Kinematics of hamster sperm during penetration of the cumulus cell matrix. Drobnis EZ; Yudin AI; Cherr GN; Katz DF Gamete Res; 1988 Dec; 21(4):367-83. PubMed ID: 3220430 [TBL] [Abstract][Full Text] [Related]
12. Functional state of the axonemal dyneins during flagellar bend propagation. Woolley DM; Vernon GG Biophys J; 2002 Oct; 83(4):2162-9. PubMed ID: 12324433 [TBL] [Abstract][Full Text] [Related]
14. Temperature-dependent hyperactivated movement of hamster spermatozoa. Si Y Biol Reprod; 1997 Dec; 57(6):1407-12. PubMed ID: 9408247 [TBL] [Abstract][Full Text] [Related]
15. The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails. Sale WS J Cell Biol; 1986 Jun; 102(6):2042-52. PubMed ID: 2940250 [TBL] [Abstract][Full Text] [Related]
16. Movement of Myzostomum spermatozoa: calcium ion regulation of swimming direction. Ishijima S; Ishijima SA; Afzelius BA Cell Motil Cytoskeleton; 1994; 28(2):135-42. PubMed ID: 8087872 [TBL] [Abstract][Full Text] [Related]
17. Digital image analysis of flagellar beating and microtubule sliding of activated and hyperactivated sperm flagella. Ishijima S Soc Reprod Fertil Suppl; 2007; 65():327-30. PubMed ID: 17644972 [TBL] [Abstract][Full Text] [Related]
18. Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa. Brokaw CJ J Cell Biol; 1991 Sep; 114(6):1201-15. PubMed ID: 1894694 [TBL] [Abstract][Full Text] [Related]
19. Rotational movement of a spermatozoon around its long axis. Ishijima S; Hamaguchi MS; Naruse M; Ishijima SA; Hamaguchi Y J Exp Biol; 1992 Feb; 163():15-31. PubMed ID: 1556511 [TBL] [Abstract][Full Text] [Related]
20. Changes in flagellar movement of rat spermatozoa along the length of the epididymis: manual and computer-aided image analysis. Jeulin C; Lewin LM; Chevrier C; Schoevaert-Brossault D Cell Motil Cytoskeleton; 1996; 35(2):147-61. PubMed ID: 8894284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]