These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6747679)

  • 21. Vibratory adaptation of cutaneous mechanoreceptive afferents.
    Bensmaïa SJ; Leung YY; Hsiao SS; Johnson KO
    J Neurophysiol; 2005 Nov; 94(5):3023-36. PubMed ID: 16014802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey.
    Freeman AW; Johnson KO
    J Physiol; 1982 Feb; 323():43-64. PubMed ID: 7097579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The firing characteristics of foot sole cutaneous mechanoreceptor afferents in response to vibration stimuli.
    Strzalkowski NDJ; Ali RA; Bent LR
    J Neurophysiol; 2017 Oct; 118(4):1931-1942. PubMed ID: 28679842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capacities of humans and monkeys to discriminate vibratory stimuli of different frequency and amplitude: a correlation between neural events and psychological measurements.
    LaMotte RH; Mountcastle VB
    J Neurophysiol; 1975 May; 38(3):539-59. PubMed ID: 1127456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional properties of slowly adapting mechanoreceptors in cat footpad skin.
    Ferrington DG
    Somatosens Res; 1985; 2(3):249-61. PubMed ID: 4001676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.
    Mildren RL; Bent LR
    J Appl Physiol (1985); 2016 Apr; 120(8):855-64. PubMed ID: 26823342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrotactile thresholds in mechanoreceptive afferents innervating the foot pad of the cat. The importance of stimulus frequency and duration.
    Hämäläinen H; Pertovaara A
    Acta Physiol Scand; 1984 Mar; 120(3):321-7. PubMed ID: 6741569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to vibration.
    Lundström RJ
    Scand J Work Environ Health; 1986 Aug; 12(4 Spec No):413-6. PubMed ID: 3775331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectopic excitability of injured nerves in monkey: entrained responses to vibratory stimuli.
    Koschorke GM; Meyer RA; Tillman DB; Campbell JN
    J Neurophysiol; 1991 Mar; 65(3):693-701. PubMed ID: 1711106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Afferent fibers from mystacial vibrissae of cats and seals.
    Dykes RW
    J Neurophysiol; 1975 May; 38(3):650-62. PubMed ID: 1127461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transmission security for single, hair follicle-related tactile afferent fibers and their target cuneate neurons in cat.
    Zachariah MK; Coleman GT; Mahns DA; Zhang HQ; Rowe MJ
    J Neurophysiol; 2001 Aug; 86(2):900-11. PubMed ID: 11495959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of motion on the skin. I. Receptive fields and temporal frequency coding by cutaneous mechanoreceptors of OPTACON pulses delivered to the hand.
    Gardner EP; Palmer CI
    J Neurophysiol; 1989 Dec; 62(6):1410-36. PubMed ID: 2600632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanosensory perception: are there contributions from bone-associated receptors?
    Rowe MJ; Tracey DJ; Mahns DA; Sahai V; Ivanusic JJ
    Clin Exp Pharmacol Physiol; 2005; 32(1-2):100-8. PubMed ID: 15730443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative analysis of laryngeal mechanosensitivity in the cat and rabbit.
    Davis PJ; Nail BS
    J Physiol; 1987 Jul; 388():467-85. PubMed ID: 3656197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tactile detection of a dot on a smooth surface: peripheral neural events.
    LaMotte RH; Whitehouse J
    J Neurophysiol; 1986 Oct; 56(4):1109-28. PubMed ID: 3097273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal factors in tactile spatial acuity: evidence for RA interference in fine spatial processing.
    Bensmaïa SJ; Craig JC; Johnson KO
    J Neurophysiol; 2006 Mar; 95(3):1783-91. PubMed ID: 16236778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of motion on the skin. IV. Responses of Pacinian corpuscle afferents innervating the primate hand to stripe patterns on the OPTACON.
    Palmer CI; Gardner EP
    J Neurophysiol; 1990 Jul; 64(1):236-47. PubMed ID: 2388068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parallel processing of tactile information in the cerebral cortex of the cat: effect of reversible inactivation of SI on responsiveness of SII neurons.
    Turman AB; Ferrington DG; Ghosh S; Morley JW; Rowe MJ
    J Neurophysiol; 1992 Feb; 67(2):411-29. PubMed ID: 1569467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coding of vibrotactile stimulus frequency by Pacinian corpuscle afferents.
    Horch K
    J Acoust Soc Am; 1991 Jun; 89(6):2827-36. PubMed ID: 1918626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liminal and supraliminal response characteristics of mechanoreceptive neurons in the cuneate nucleus of cat.
    Pertovaara A; Huopaniemi T; Tukeva T
    Exp Brain Res; 1986; 62(3):486-94. PubMed ID: 3720880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.