These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 6747846)

  • 1. Effects of chronic stimulation on the metabolic heterogeneity of the fibre population in rabbit tibialis anterior muscle.
    Buchegger A; Nemeth PM; Pette D; Reichmann H
    J Physiol; 1984 May; 350():109-19. PubMed ID: 6747846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition.
    Jaworowski A; Porter MM; Holmbäck AM; Downham D; Lexell J
    Acta Physiol Scand; 2002 Nov; 176(3):215-25. PubMed ID: 12392501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity patterns of phosphofructokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in microdissected fast and slow fibres from rabbit psoas and soleus muscle.
    Spamer C; Pette D
    Histochemistry; 1977 Jun; 52(3):201-16. PubMed ID: 142072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of succinate dehydrogenase activity in fibres of rabbit tibialis anterior muscle to chronic nerve stimulation.
    Pette D; Tyler KR
    J Physiol; 1983 May; 338():1-9. PubMed ID: 6224003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activities of malate dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and fructose-1,6-diphosphatase with regard to metabolic subpopulations of fast- and slow-twitch fibres in rabbit muscles.
    Spamer C; Pette D
    Histochemistry; 1979 Feb; 60(1):9-19. PubMed ID: 218915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic long-term electrostimulation creates a unique metabolic enzyme profile in rabbit fast-twitch muscle.
    Hood DA; Pette D
    FEBS Lett; 1989 Apr; 247(2):471-4. PubMed ID: 2714446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
    Essén-Gustavsson B; Henriksson J
    Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of metabolic profiles on single muscle fibres of different types.
    Takekura H; Yoshioka T
    J Muscle Res Cell Motil; 1987 Aug; 8(4):342-8. PubMed ID: 2958499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of intermittent long-term stimulation on contractile, histochemical and metabolic properties of fibre populations in fast and slow rabbit muscles.
    Pette D; Ramirez BU; Müller W; Simon R; Exner GU; Hildebrand R
    Pflugers Arch; 1975 Dec; 361(1):1-7. PubMed ID: 128733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species-specific effects of chronic nerve stimulation upon tibialis anterior muscle in mouse, rat, guinea pig, and rabbit.
    Simoneau JA; Pette D
    Pflugers Arch; 1988 Jul; 412(1-2):86-92. PubMed ID: 3174388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent increase of succinate dehydrogenase activity in low-frequency stimulated rabbit muscle: a comparison between microphotometric and biochemical methods.
    Skorjanc D; Heine G; Pette D
    Histochem Cell Biol; 1997 Jan; 107(1):47-55. PubMed ID: 9049641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme activities in single electrophysiologically identified crab muscle fibres.
    Maier L; Pette D; Rathmayer W
    J Physiol; 1986 Feb; 371():191-9. PubMed ID: 3701650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histophotometry--the method of choice in quantifying dehydrogenase histochemistry.
    Punkt K; Erzen I; Krug H; Punkt J; Seidler E
    Acta Histochem; 1989; 87(1):63-9. PubMed ID: 2513699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoration of fast muscle characteristics following cessation of chronic stimulation: physiological, histochemical and metabolic changes during slow-to-fast transformation.
    Brown JM; Henriksson J; Salmons S
    Proc R Soc Lond B Biol Sci; 1989 Jan; 235(1281):321-46. PubMed ID: 2564683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme levels in individual rat muscle fibers.
    Hintz CS; Lowry CV; Kaiser KK; McKee D; Lowry OH
    Am J Physiol; 1980 Sep; 239(3):C58-65. PubMed ID: 6254366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic threshold, skeletal muscle enzymes and fiber composition in young female cross-country skiers.
    Rusko H; Rahkila P; Karvinen E
    Acta Physiol Scand; 1980 Mar; 108(3):263-8. PubMed ID: 7376921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibre sizes and histochemical staining characteristics in normal and chronically stimulated fast muscle of cat.
    Donselaar Y; Eerbeek O; Kernell D; Verhey BA
    J Physiol; 1987 Jan; 382():237-54. PubMed ID: 2957493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific effects of low-frequency stimulation upon energy metabolism in tibialis anterior muscles of mouse, rat, guinea pig and rabbit.
    Simoneau JA; Pette D
    Reprod Nutr Dev (1980); 1988; 28(3B):781-4. PubMed ID: 2973103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic stimulation of mammalian muscle: enzyme and metabolic changes in individual fibres.
    Henriksson J; Salmons S; Lowry OH
    Biomed Biochim Acta; 1989; 48(5-6):S445-54. PubMed ID: 2527028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes of energy metabolism, myosin light chain composition, lactate dehydrogenase isozyme pattern and fibre type distribution of denervated fast-twitch muscle from rabbit after low frequency stimulation.
    Reichmann H; Nix WA
    Pflugers Arch; 1985 Oct; 405(3):244-9. PubMed ID: 4069981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.