These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6748739)

  • 1. Modification of the David-Kopf puller (DKI 700 C) for the preparation of multi-barrel glass micropipettes.
    Tölle TR; Dabrowski H; Welzl H
    J Neurosci Methods; 1984 Apr; 10(4):277-80. PubMed ID: 6748739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dry beveling micropipettes using a computer hard drive.
    Canfield JG
    J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An automated pipette puller for fabrication of glass micropipettes.
    Tamizhanban R; Sreejith KR; Jayanth GR
    Rev Sci Instrum; 2014 May; 85(5):055105. PubMed ID: 24880413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design for a slender shaft glass micropipette.
    Perachio AA; Correia MJ
    J Neurosci Methods; 1983 Dec; 9(4):287-93. PubMed ID: 6668954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making patch-pipettes and sharp electrodes with a programmable puller.
    Brown AL; Johnson BE; Goodman MB
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new moving-coil microelectrode puller.
    Ensor DR
    J Neurosci Methods; 1979 Mar; 1(1):95-105. PubMed ID: 544958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure polishing: a method for re-shaping patch pipettes during fire polishing.
    Goodman MB; Lockery SR
    J Neurosci Methods; 2000 Jul; 100(1-2):13-5. PubMed ID: 11040361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quartz micropipettes for intracellular voltage microelectrodes and ion-selective microelectrodes.
    Munoz JL; Coles JA
    J Neurosci Methods; 1987 Nov; 22(1):57-64. PubMed ID: 2826932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation (pulling) of needles for gene delivery by microinjection.
    Dean DA
    CSH Protoc; 2006 Dec; 2006(7):. PubMed ID: 22484674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reproducible technique for breaking glass micropipettes over a wide range of tip diameters.
    Briano RA
    J Neurosci Methods; 1983 Sep; 9(1):31-4. PubMed ID: 6632960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparing injection pipettes on a flaming/brown pipette puller.
    Dean DA; Gasiorowski JZ
    Cold Spring Harb Protoc; 2011 Mar; 2011(3):prot5586. PubMed ID: 21363950
    [No Abstract]   [Full Text] [Related]  

  • 12. A novel concentric double-barrelled calcium-selective microelectrode for small cells.
    Yamaguchi H
    Can J Physiol Pharmacol; 1987 May; 65(5):1006-8. PubMed ID: 3621028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of glass micropipettes: a semi-automatic approach for trimming the pipette tip.
    Engström KG; Meiselman HJ
    Biorheology; 1992; 29(5-6):499-506. PubMed ID: 1306378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A special holder allows replacement of the recording barrel of a 'piggy-back' multibarrel microelectrode.
    Schurr A; Rigor BM
    Electroencephalogr Clin Neurophysiol; 1981 May; 51(5):571-3. PubMed ID: 6165558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified horizontal capillary puller for fabrication of patch-clamp pipettes.
    Mealing GA; Schwartz JL
    Brain Res Bull; 1989 May; 22(5):913-5. PubMed ID: 2765950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface properties of glass micropipettes and their effect on biological studies.
    Malboubi M; Gu Y; Jiang K
    Nanoscale Res Lett; 2011 May; 6(1):401. PubMed ID: 21711929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing-based frugal manufacturing of glass pipettes for minimally invasive delivery of therapeutics to the brain.
    Qiao G; Gulisashvili D; Jablonska A; Zhao G; Janowski M; Walczak P; Liang Y
    Neuroprotection; 2023 Sep; 1(1):58-65. PubMed ID: 37771648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technique for precision beveling of relatively large micropipettes.
    Brown KT; Flaming DG
    J Neurosci Methods; 1979 Mar; 1(1):25-34. PubMed ID: 544956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multimicroelectrode system composed of independent glass micropipettes with an eccentric tip structure for simultaneous intracellular recording.
    Saburi M; Yamada M; Shigematsu Y
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):656-8. PubMed ID: 1601448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical evaluation of red blood cell geometry using micropipette aspiration.
    Engström KG; Möller B; Meiselman HJ
    Blood Cells; 1992; 18(2):241-57; discussion 258-65. PubMed ID: 1450425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.