These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6749128)

  • 1. Free radicals in vivo. Covalent binding to lipids.
    Smith CV; Hughes H; Mitchell JR
    Mol Pharmacol; 1984 Jul; 26(1):112-6. PubMed ID: 6749128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of trichloromethyl radicals to lipids of the hepatic endoplasmic reticulum during tetrachloromethane metabolism.
    Link B; Dürk H; Thiel D; Frank H
    Biochem J; 1984 Nov; 223(3):577-86. PubMed ID: 6508732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of biotransformation in chemical-induced liver injury.
    Mitchell JR; Snodgrass WR; Gillette JR
    Environ Health Perspect; 1976 Jun; 15():27-38. PubMed ID: 1033831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid metabolites of carbon tetrachloride.
    Gordis E
    J Clin Invest; 1969 Jan; 48(1):203-9. PubMed ID: 5765023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactivation and bound residues.
    Burgat-Sacaze V; Rico A; Delatour P
    Food Addit Contam; 1984; 1(2):121-9. PubMed ID: 6536524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring covalent binding in hepatotoxicity.
    Devi SS; Palkar PS; Mehendale HM
    Curr Protoc Toxicol; 2007 May; Chapter 14():Unit14.6. PubMed ID: 23045139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion.
    Burk RF; Lane JM; Patel K
    J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress.
    Lauterburg BH; Smith CV; Hughes H; Mitchell JR
    J Clin Invest; 1984 Jan; 73(1):124-33. PubMed ID: 6690473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diquat hepatotoxicity in the Fischer-344 rat: the role of covalent binding to tissue proteins and lipids.
    Spalding DJ; Mitchell JR; Jaeschke H; Smith CV
    Toxicol Appl Pharmacol; 1989 Nov; 101(2):319-27. PubMed ID: 2815086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen- and carbon-centered free radical formation during carbon tetrachloride metabolism. Observation of lipid radicals in vivo and in vitro.
    McCay PB; Lai EK; Poyer JL; DuBose CM; Janzen EG
    J Biol Chem; 1984 Feb; 259(4):2135-43. PubMed ID: 6321461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent modification of hepatic microsomal lipids of rats by carbon tetrachloride.
    Kaphalia BS; Ansari GA
    Mol Toxicol; 1989; 2(3):199-213. PubMed ID: 2487757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenobiotics, drug metabolism, and liver injury.
    Farber JL
    Monogr Pathol; 1987; (28):43-53. PubMed ID: 3537744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-(4-R-phenylamino)-5-methoxy-1,2-benzoquinones are new selective inhibitors of carbon tetrachloride-initiated free radical reactions in liver.
    Kostyuk VA; Potapovich AI; Tereshchenko SM
    Biochem Int; 1991 Sep; 25(1):167-72. PubMed ID: 1772442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of covalent binding and lipid peroxidation in liver damage by carbon tetrachloride].
    Kostiuk VA
    Biokhimiia; 1991 Oct; 56(10):1878-85. PubMed ID: 1777525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products.
    Fernández G; Villarruel MC; de Toranzo EG; Castro JA
    Res Commun Chem Pathol Pharmacol; 1982 Feb; 35(2):283-90. PubMed ID: 7071415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for common binding of acetaminophen and bromobenzene to the 58-kDa acetaminophen-binding protein.
    Manautou JE; Khairallah EA; Cohen SD
    J Toxicol Environ Health; 1995 Nov; 46(3):263-9. PubMed ID: 7473856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irreversible binding of carbon tetrachloride to microsomal phospholipids. Free radical nature of the reactive specie and alterations in the physico-chemical properties of the target fatty acids.
    Villarruel MC; Castro JA
    Res Commun Chem Pathol Pharmacol; 1975 Jan; 10(1):105-16. PubMed ID: 1124312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic activation of furosemide to a chemically reactive, hepatotoxic metabolite.
    Mitchell JR; Nelson WL; Potter WZ; Sasame HA; Jollow DJ
    J Pharmacol Exp Ther; 1976 Oct; 199(1):41-52. PubMed ID: 978483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsomal metabolism and covalent binding of [3H/14C]-bromobenzene. Evidence for quinones as reactive metabolites.
    Narasimhan N; Weller PE; Buben JA; Wiley RA; Hanzlik RP
    Xenobiotica; 1988 May; 18(5):491-9. PubMed ID: 3400271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent binding of carbon tetrachloride metabolites to liver nuclear DNA, proteins, and lipids.
    Diaz Gomez MI; Castro JA
    Toxicol Appl Pharmacol; 1980 Nov; 56(2):199-206. PubMed ID: 7466819
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.