These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 6749748)

  • 41. Sequence and evolution of related bovine and caprine satellite DNAs. Identification of a short DNA sequence potentially involved in satellite DNA amplification.
    Buckland RA
    J Mol Biol; 1985 Nov; 186(1):25-30. PubMed ID: 4078901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polymorphism, monomorphism, and sequences in conserved microsatellites in primate species.
    Blanquer-Maumont A; Crouau-Roy B
    J Mol Evol; 1995 Oct; 41(4):492-7. PubMed ID: 7563137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alu repeats: a source for the genesis of primate microsatellites.
    Arcot SS; Wang Z; Weber JL; Deininger PL; Batzer MA
    Genomics; 1995 Sep; 29(1):136-44. PubMed ID: 8530063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Members of the KpnI family of long interspersed repeated sequences join and interrupt alpha-satellite in the monkey genome.
    Grimaldi G; Singer MF
    Nucleic Acids Res; 1983 Jan; 11(2):321-38. PubMed ID: 6298721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Repetitive satellite-like sequences are present within or upstream from 3 avian protein-coding genes.
    Maroteaux L; Heilig R; Dupret D; Mandel JL
    Nucleic Acids Res; 1983 Mar; 11(5):1227-43. PubMed ID: 6828383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Is sex-specifically arranged repetitive DNA involved in primary sex determination of vertebrates?
    Epplen JT; Sutou S; McCarrey JR; Ohno S
    Prog Clin Biol Res; 1982; 103 Pt A():317-26. PubMed ID: 7163202
    [No Abstract]   [Full Text] [Related]  

  • 47. A transcribed satellite DNA from the bullfrog Rana catesbeiana.
    Wu ZG; Murphy C; Gall JG
    Chromosoma; 1986; 93(4):291-7. PubMed ID: 3009105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative Analysis of Satellite DNA in the
    Jagannathan M; Warsinger-Pepe N; Watase GJ; Yamashita YM
    G3 (Bethesda); 2017 Feb; 7(2):693-704. PubMed ID: 28007840
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The MB1 family of repeats in clones from the genomes of mammals].
    Korotkov EV
    Izv Akad Nauk SSSR Biol; 1992; (4):546-57. PubMed ID: 1452902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative mapping of a gorilla-derived alpha satellite DNA clone on great ape and human chromosomes.
    Baldini A; Miller DA; Shridhar V; Rocchi M; Miller OJ; Ward DC
    Chromosoma; 1991 Nov; 101(2):109-14. PubMed ID: 1769275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mammalian repetitive DNA sequences in a stable Robertsonian system. Characterization, in situ hybridizations, and cross-species hybridizations of repetitive DNAs in calf, sheep, and goat chromosomes.
    Kurnit DM; Brown FL; Maio JJ
    Cytogenet Cell Genet; 1978; 21(3):145-67. PubMed ID: 657846
    [No Abstract]   [Full Text] [Related]  

  • 52. Species- and tissue-specific transcription of complex, highly repeated satellite-like Bsp elements in the fox genome.
    Belyaeva TA; Vishnivetsky PN; Potapov VA; Zhelezova AI; Romashchenko AG
    Mamm Genome; 1992; 3(4):233-6. PubMed ID: 1377064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three organizations of human DNA.
    Strayer D; Heintz N; Roeder R; Gillespie D
    Proc Natl Acad Sci U S A; 1983 Aug; 80(15):4770-4. PubMed ID: 6576359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequence analysis of Vicia faba repeated DNA, the FokI repeat element.
    Kato A; Yakura K; Tanifuji S
    Nucleic Acids Res; 1984 Aug; 12(16):6415-26. PubMed ID: 6089113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repeat sequence families derived from mammalian tRNA genes.
    Daniels GR; Deininger PL
    Nature; 1985 Oct 31-Nov 6; 317(6040):819-22. PubMed ID: 3851163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A family of differentially amplified repetitive DNA sequences in the genus Beta reveals genetic variation in Beta vulgaris subspecies and cultivars.
    Kubis S; Heslop-Harrison JS; Schmidt T
    J Mol Evol; 1997 Mar; 44(3):310-20. PubMed ID: 9060397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Higher-order organization of subrepeats and the evolution of cervid satellite I DNA.
    Lee C; Court DR; Cho C; Haslett JL; Lin CC
    J Mol Evol; 1997 Mar; 44(3):327-35. PubMed ID: 9060399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [A new approach to cloning of tandem repetitive DNA sequences].
    Gar'kavtsev IV; Tsvetkova TG; Liapunova NA
    Mol Gen Mikrobiol Virusol; 1989 May; (5):11-5. PubMed ID: 2747701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An evaluation of the molecular clock hypothesis using mammalian DNA sequences.
    Li WH; Tanimura M; Sharp PM
    J Mol Evol; 1987; 25(4):330-42. PubMed ID: 3118047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-copy sequence homology among the GC-richest isochores of the genomes from warm-blooded vertebrates.
    Cacciò S; Perani P; Saccone S; Kadi F; Bernardi G
    J Mol Evol; 1994 Oct; 39(4):331-9. PubMed ID: 7966363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.