These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 6749845)
41. Mechanisms and control of ATP-dependent proteolysis. Etlinger JD; McMullen H; Rieder RF; Ibrahim A; Janeczko RA; Marmorstein S Prog Clin Biol Res; 1985; 180():47-60. PubMed ID: 2994091 [No Abstract] [Full Text] [Related]
42. Vanadate effect on the Na,K-ATPase and the Na-K pump in in vitro-grown rat vascular smooth muscle cells. Searle BM; Higashino H; Khalil F; Bogden JD; Tokushige A; Tamura H; Kino M; Aviv A Circ Res; 1983 Aug; 53(2):186-91. PubMed ID: 6309430 [TBL] [Abstract][Full Text] [Related]
43. Evidence for a novel ATP-dependent membrane-associated protease in spinach leaf mitochondria. Knorpp C; Szigyarto C; Glaser E Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):527-31. PubMed ID: 7654191 [TBL] [Abstract][Full Text] [Related]
44. 125I-ubiquitin is kinetically invalid as a tracer radiolabel for studies of ATP-dependent proteolysis. Wilkinson KD; Cox MJ Prog Clin Biol Res; 1985; 180():211-3. PubMed ID: 2994085 [No Abstract] [Full Text] [Related]
45. Proton-adenosinetriphosphatase complex of rat liver mitochondria: effect of its inhibitory peptide on adenosine 5'-triphosphate hydrolytic and functional activities of the enzyme. Cintrón NM; Hullihen J; Schwerzmann K; Pedersen PL Biochemistry; 1982 Apr; 21(8):1878-85. PubMed ID: 6211190 [No Abstract] [Full Text] [Related]
46. Degradation in vitro of bacteriophage lambda N protein by Lon protease from Escherichia coli. Maurizi MR J Biol Chem; 1987 Feb; 262(6):2696-703. PubMed ID: 2950089 [TBL] [Abstract][Full Text] [Related]
47. The insertion of monoamine oxidase A into the outer membrane of rat liver mitochondria. Zhuang ZP; Marks B; McCauley RB J Biol Chem; 1992 Jan; 267(1):591-6. PubMed ID: 1309756 [TBL] [Abstract][Full Text] [Related]
48. The energy utilized in protein breakdown by the ATP-dependent protease (La) from Escherichia coli. Menon AS; Waxman L; Goldberg AL J Biol Chem; 1987 Jan; 262(2):722-6. PubMed ID: 2948950 [TBL] [Abstract][Full Text] [Related]
49. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins. Lin SH J Biol Chem; 1985 Jul; 260(13):7850-6. PubMed ID: 2409077 [TBL] [Abstract][Full Text] [Related]
50. [A molecular fossil comes to life: a long-chain polyphosphate regulates protease activity]. Kuroda A; Nomura K; Ohtake H Tanpakushitsu Kakusan Koso; 2002 Jun; 47(7):801-7. PubMed ID: 12058477 [No Abstract] [Full Text] [Related]
51. [Metabolism and various properties of proteinase controlling catalase metabolism in rat liver mitochondria]. Komov VP; Strelkova MA Biokhimiia; 1987 Jul; 52(7):1080-6. PubMed ID: 3478095 [TBL] [Abstract][Full Text] [Related]
52. Vanadate inhibition of Na+K+. ATPase and K+-dependent p-nitrophenylphosphatase: a kinetic analysis. Blázovics A; Vodnyánszky L; Somogyi J; Horváth I Acta Biochim Biophys Acad Sci Hung; 1983; 18(3-4):199-209. PubMed ID: 6331047 [TBL] [Abstract][Full Text] [Related]
53. ATP-Mg2+ reversal of the salt activation of membrane bound carnitine palmitoyltransferase activities of liver mitochondria. Pande SV; Lee TS; Murthy MS Biochem Int; 1988 Dec; 17(6):1021-8. PubMed ID: 3266735 [TBL] [Abstract][Full Text] [Related]
54. Effects of the cys mutations on structure and function of the ATP-dependent HslVU protease in Escherichia coli. The Cys287 to Val mutation in HslU uncouples the ATP-dependent proteolysis by HslvU from ATP hydrolysis. Yoo SJ; Kim HH; Shin DH; Lee CS; Seong IS; Seol JH; Shimbara N; Tanaka K; Chung CH J Biol Chem; 1998 Sep; 273(36):22929-35. PubMed ID: 9722513 [TBL] [Abstract][Full Text] [Related]
55. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. Kanemori M; Yanagi H; Yura T J Biol Chem; 1999 Jul; 274(31):22002-7. PubMed ID: 10419524 [TBL] [Abstract][Full Text] [Related]
56. Characterization of energy-dependent proteases in bacteria. Chung CH; Yoo SJ; Seol JH; Kang MS Biochem Biophys Res Commun; 1997 Dec; 241(3):613-6. PubMed ID: 9434756 [No Abstract] [Full Text] [Related]
57. A kinetic study of the interaction of vanadate with the Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum. Ortiz A; García-Carmona F; García-Cánovas F; Gómez-Fernández JC Biochem J; 1984 Jul; 221(1):213-22. PubMed ID: 6147134 [TBL] [Abstract][Full Text] [Related]
58. Vanadate-dependent oxidation of pyridine nucleotides in rat liver microsomal membranes. Coulombe RA; Briskin DP; Keller RJ; Thornley WR; Sharma RP Arch Biochem Biophys; 1987 Jun; 255(2):267-73. PubMed ID: 3647757 [TBL] [Abstract][Full Text] [Related]
59. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La. Hwang BJ; Park WJ; Chung CH; Goldberg AL Proc Natl Acad Sci U S A; 1987 Aug; 84(16):5550-4. PubMed ID: 3303028 [TBL] [Abstract][Full Text] [Related]
60. Studies of the protein encoded by the lon mutation, capR9, in Escherichia coli. A labile form of the ATP-dependent protease La that inhibits the wild type protease. Chung CH; Waxman L; Goldberg AL J Biol Chem; 1983 Jan; 258(1):215-21. PubMed ID: 6336746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]