These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6750136)

  • 1. Centromeric DNA from Saccharomyces cerevisiae.
    Stinchcomb DT; Mann C; Davis RW
    J Mol Biol; 1982 Jun; 158(2):157-90. PubMed ID: 6750136
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of a Shuttle Vector That Transforms at High Frequency for the Emerging Human Fungal Pathogen:
    Determann B; Fu J; Wickes BL
    J Fungi (Basel); 2024 Jul; 10(7):. PubMed ID: 39057362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telomeres and telomerase in prostate cancer development and therapy.
    Graham MK; Meeker A
    Nat Rev Urol; 2017 Oct; 14(10):607-619. PubMed ID: 28675175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequences and stability of a Nicotiana nuclear DNA segment possessing autonomously replicating ability in yeast.
    Ohtani T; Kiyokawa S; Ohgawara T; Harada H; Uchimiya H
    Plant Mol Biol; 1985 Jan; 5(1):35-9. PubMed ID: 24306538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic organization of two families of highly repeated nuclear DNA sequences of maize selected for autonomous replicating activity in yeast.
    Berlani RE; Davis RW; Walbot V
    Plant Mol Biol; 1988 Mar; 11(2):161-72. PubMed ID: 24272258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying a property of origins of DNA synthesis required to support plasmids stably in human cells.
    Wang CY; Sugden B
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9639-44. PubMed ID: 18621728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast.
    Nakaseko Y; Adachi Y; Funahashi S; Niwa O; Yanagida M
    EMBO J; 1986 May; 5(5):1011-21. PubMed ID: 15957216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency electroporation by freezing intact yeast cells with addition of calcium.
    Suga M; Hatakeyama T
    Curr Genet; 2003 Jun; 43(3):206-11. PubMed ID: 12684838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations.
    Fasullo M; Bennett T; AhChing P; Koudelik J
    Mol Cell Biol; 1998 Mar; 18(3):1190-200. PubMed ID: 9488434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae.
    Yashiroda H; Oguchi T; Yasuda Y; Toh-E A; Kikuchi Y
    Mol Cell Biol; 1996 Jul; 16(7):3255-63. PubMed ID: 8668140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae.
    Runge KW; Zakian VA
    Mol Cell Biol; 1996 Jun; 16(6):3094-105. PubMed ID: 8649421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium tumefaciens-mediated transformation of yeast.
    Piers KL; Heath JD; Liang X; Stephens KM; Nester EW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1613-8. PubMed ID: 8643679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p.
    Suzuki-Fujimoto T; Fukuma M; Yano KI; Sakurai H; Vonika A; Johnston SA; Fukasawa T
    Mol Cell Biol; 1996 May; 16(5):2504-8. PubMed ID: 8628318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient expression and secretion of Aspergillus niger RH5344 polygalacturonase in Saccharomyces cerevisiae.
    Lang C; Looman AC
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):147-56. PubMed ID: 8579828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of an ARS element from the fission yeast Schizosaccharomyces pombe.
    Clyne RK; Kelly TJ
    EMBO J; 1995 Dec; 14(24):6348-57. PubMed ID: 8557055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between three common subunits of yeast RNA polymerases I and III.
    Lalo D; Carles C; Sentenac A; Thuriaux P
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5524-8. PubMed ID: 8516295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae linear chromosome stability (lcs) mutants increase the loss rate of artificial and natural linear chromosomes.
    Runge KW; Zakian VA
    Chromosoma; 1993 Feb; 102(3):207-17. PubMed ID: 8458255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA polymerase mutation that suppresses the segregation bias of an ARS plasmid in Saccharomyces cerevisiae.
    Houtteman SW; Elder RT
    Mol Cell Biol; 1993 Mar; 13(3):1489-96. PubMed ID: 8441392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the yeast fructose 1,6-biphosphatase structural gene affect expression of a fructose 1,6-biphosphatase-endoglucanase A hybrid protein.
    Silva A; Benitez J
    Curr Genet; 1993; 23(4):370-2. PubMed ID: 8385582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae.
    Ivanov EL; Sugawara N; White CI; Fabre F; Haber JE
    Mol Cell Biol; 1994 May; 14(5):3414-25. PubMed ID: 8164689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.