These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 6750407)
1. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine. Hrmová M; Drobnica L Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407 [TBL] [Abstract][Full Text] [Related]
2. Induction of mycelial type of development in Candida albicans by low glucose concentration. Hrmová M; Drobnica L Mycopathologia; 1981 Nov; 76(2):83-96. PubMed ID: 7033795 [TBL] [Abstract][Full Text] [Related]
3. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans. Torosantucci A; Angiolella L; Filesi C; Cassone A J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717 [TBL] [Abstract][Full Text] [Related]
5. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans. Natarajan K; Rai YP; Datta A Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867 [TBL] [Abstract][Full Text] [Related]
6. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response. Mattia E; Carruba G; Angiolella L; Cassone A J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114 [TBL] [Abstract][Full Text] [Related]
7. [Induction of hyphal transformation, uptake and incorporation of N-acetyl-D-glucosamine in Candida albicans]. Mattia E; Carruba G; Angiolella L; Cassone A Ann Ist Super Sanita; 1982; 18(3):493-6. PubMed ID: 6765081 [No Abstract] [Full Text] [Related]
11. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans. Milewski S; Chmara H; Borowski E Arch Microbiol; 1986 Aug; 145(3):234-40. PubMed ID: 3532988 [TBL] [Abstract][Full Text] [Related]
12. Starvation and germ tube formation in the exponential phase Candida albicans. Cho T; Hamatake H; Kaminishi H; Kuroki A; Suehara T; Suehara Y; Sakima T; Hagihara Y; Watanabe K Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):510-21. PubMed ID: 2562099 [TBL] [Abstract][Full Text] [Related]
13. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Simonetti N; Strippoli V; Cassone A Nature; 1974 Jul; 250(464):344-6. PubMed ID: 4605454 [No Abstract] [Full Text] [Related]
14. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans. Pollack JH; Hashimoto T Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098 [TBL] [Abstract][Full Text] [Related]
16. Induction and morphogenesis of chlamydospores in an agerminative variant of Candida albicans. Torosantucci A; Cassone A Sabouraudia; 1983 Mar; 21(1):49-57. PubMed ID: 6342175 [TBL] [Abstract][Full Text] [Related]
17. Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation. Zelada A; Castilla R; Passeron S; Cantore ML Cell Mol Biol (Noisy-le-grand); 1996 Jun; 42(4):567-76. PubMed ID: 8828912 [TBL] [Abstract][Full Text] [Related]
18. Growth of Candida albicans on artificial D-glucose derivatives. Hrmová M; Sturdík E; Kosík M; Gemeiner P; Petrus L Z Allg Mikrobiol; 1983; 23(5):303-12. PubMed ID: 6353783 [TBL] [Abstract][Full Text] [Related]
19. Regulation of chitin synthesis during germ-tube formation in Candida albicans. Chiew YY; Shepherd MG; Sullivan PA Arch Microbiol; 1980 Mar; 125(1-2):97-104. PubMed ID: 6446267 [TBL] [Abstract][Full Text] [Related]
20. The control of morphogenesis in Candida albicans. Shepherd MG; Sullivan PA J Dent Res; 1984 Mar; 63(3):435-40. PubMed ID: 6366000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]