These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6751701)

  • 1. A simple fluorescence technique for light microscopy of the crystalline lens.
    Rae JL; Truitt KD; Kuszak JR
    Curr Eye Res; 1982; 2(1):1-5. PubMed ID: 6751701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of procion dyes for light microscopy of the frog lens.
    Rae JL; Truitt KD; Kuszak JR
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1167-71. PubMed ID: 6193080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diethylene glycol distearate as an embedding medium for high resolution light microscopy.
    Taleporos P
    J Histochem Cytochem; 1974 Jan; 22(1):29-34. PubMed ID: 4596693
    [No Abstract]   [Full Text] [Related]  

  • 4. The movement of procion dye in the crystalline lens.
    Rae JL
    Invest Ophthalmol; 1974 Feb; 13(2):147-50. PubMed ID: 4544153
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of the intracellular membrane potentials in crystalline lenses of various frogs.
    Okajima Y; Akaike N
    Comp Biochem Physiol A Comp Physiol; 1984; 77(3):543-6. PubMed ID: 6142807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of microdissected cataractous human lenses.
    Horwitz J; Neuhaus R; Dockstader J
    Invest Ophthalmol Vis Sci; 1981 Oct; 21(4):616-9. PubMed ID: 7287351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies on lenticular epithelium with phase-contrast microscope].
    BOKE W
    Z Zellforsch Mikrosk Anat; 1953; 38(5):428-54. PubMed ID: 13103647
    [No Abstract]   [Full Text] [Related]  

  • 8. In vivo observation of the crystalline lens capsule.
    Sasaki K; Kojima M; Hara T
    Ophthalmic Res; 1988; 20(3):154-9. PubMed ID: 3141860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confocal microscopy of human lens membranes in aged normal and nuclear cataracts.
    Boyle DL; Takemoto LJ
    Invest Ophthalmol Vis Sci; 1997 Dec; 38(13):2826-32. PubMed ID: 9418736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interrelationship of lens anatomy and optical quality. II. Primate lenses.
    Kuszak JR; Peterson KL; Sivak JG; Herbert KL
    Exp Eye Res; 1994 Nov; 59(5):521-35. PubMed ID: 9492754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lens structural disorders in the leopard frog (Rana pipiens) supplied to the laboratory from wild populations.
    Peltz R; Pezzella K; Wilson A
    Lab Anim Sci; 1978 Apr; 28(2):190-2. PubMed ID: 305977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histology of the epithelium of the normal and cataractous lens.
    François J; Victoria-Troncoso V
    Ophthalmologica; 1978; 177(3):168-74. PubMed ID: 362302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel thin section preparation and staining protocol to increase contrast and resolution of cell details for light microscopy.
    Niki T; Saito S; Gladish DK
    Biotech Histochem; 2019 Oct; 94(7):522-526. PubMed ID: 31043085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and type of morphological damage in human nuclear age-related cataracts.
    Al-Ghoul KJ; Lane CW; Taylor VL; Fowler WC; Costello MJ
    Exp Eye Res; 1996 Mar; 62(3):237-51. PubMed ID: 8690033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved fixation technique for maintaining the fine structure of the nuclear zone of neonatal mouse lens.
    Yajima Y
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1311-6. PubMed ID: 6193081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of traumatic cataractogenesis in the frog: a comparison with mouse and human lens.
    Rafferty NS; Goossens W
    Am J Anat; 1977 Mar; 148(3):385-407. PubMed ID: 300987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sturgeons, sharks, and rays have multifocal crystalline lenses and similar lens suspension apparatuses.
    Gustafsson OS; Ekström P; Kröger RH
    J Morphol; 2012 Jul; 273(7):746-53. PubMed ID: 22467468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier analysis of cytoplasmic texture in nuclear fiber cells from transparent and cataractous human and animal lenses.
    Freel CD; Gilliland KO; Wesley Lane C; Giblin FJ; Costello MJ
    Exp Eye Res; 2002 Jun; 74(6):689-702. PubMed ID: 12126943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical coupling between fibre cells in amphibian and cephalopod lenses.
    Jacob TJ; Duncan G
    Nature; 1981 Apr; 290(5808):704-6. PubMed ID: 6971413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.