These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6751843)

  • 1. Plasmodium berghei: uptake and distribution of chloroquine in infected mouse erythrocytes.
    Sirawaraporn W; Panijpan B; Yuthavong Y
    Exp Parasitol; 1982 Oct; 54(2):260-70. PubMed ID: 6751843
    [No Abstract]   [Full Text] [Related]  

  • 2. Hemoglobin catabolism and host-parasite heme balance in chloroquine-sensitive and chloroquine-resistant Plasmodium berghei infections.
    Wood PA; Eaton JW
    Am J Trop Med Hyg; 1993 Apr; 48(4):465-72. PubMed ID: 8480854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Accumulation and effluxion of chloroquine in chloroquine-sensitive and chloroquine-resistant Plasmodium berghei].
    Wang Q; Wang M; Chang H; Yang B
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1998; 16(3):189-92. PubMed ID: 12078239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration of the chloroquine receptor in cell-free preparations of erythrocytes infected with Plasmodium berghei.
    Fitch CD; Chevli R
    Antimicrob Agents Chemother; 1981 Apr; 19(4):589-92. PubMed ID: 7018392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroquine resistance in malaria: variations of substrate-stimulated chloroquine accumulation.
    Fitch CD; Chevli R; Gonzalez Y
    J Pharmacol Exp Ther; 1975 Dec; 195(3):389-96. PubMed ID: 1104805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroquine resistance and host cell hemoglobin catabolism in Plasmodium berghei.
    Wood PA; Rock LM; Eaton JW
    Prog Clin Biol Res; 1984; 155():159-69. PubMed ID: 6382314
    [No Abstract]   [Full Text] [Related]  

  • 7. Erythrocyte surface: novel determinant of drug susceptibility in rodent malaria.
    Fitch CD; Ng RC; Chevli R
    Antimicrob Agents Chemother; 1978 Aug; 14(2):185-93. PubMed ID: 358916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amodiaquin accumulation by mouse erythrocytes infected with Plasmodium berghei.
    Fitch CD; Gonzalez Y; Chevli R
    J Pharmacol Exp Ther; 1975 Dec; 195(3):397-403. PubMed ID: 488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Location of chloroquine binding sites in Plasmodium berghei.
    Kramer PA; Matusik JE
    Biochem Pharmacol; 1971 Jul; 20(7):1619-26. PubMed ID: 5126489
    [No Abstract]   [Full Text] [Related]  

  • 10. Adenosine triphosphate levels in mouse erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium berghei.
    Sarikabhuti B; Niyomkha P
    Ann Trop Med Parasitol; 1982 Dec; 76(6):657-9. PubMed ID: 6763504
    [No Abstract]   [Full Text] [Related]  

  • 11. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.
    Diribe CO; Warhurst DC
    Biochem Pharmacol; 1985 Sep; 34(17):3019-27. PubMed ID: 3899119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacology of the malaria parasite--a study of dose-response relationships in chloroquine-induced autophagic vacuole formation in Plasmodium berghei.
    Warhurst DC; Thomas SC
    Biochem Pharmacol; 1975 Nov; 24(22):2047-56. PubMed ID: 1108883
    [No Abstract]   [Full Text] [Related]  

  • 13. Relationship of chloroquine-induced redistribution of a neutral aminopeptidase to hemoglobin accumulation in malaria parasites.
    Fitch CD; Cai GZ; Chen YF; Ryerse JS
    Arch Biochem Biophys; 2003 Feb; 410(2):296-306. PubMed ID: 12573290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative characterization of hemozoin in Plasmodium berghei and vivax.
    Pisciotta JM; Scholl PF; Shuman JL; Shualev V; Sullivan DJ
    Int J Parasitol Drugs Drug Resist; 2017 Apr; 7(1):110-119. PubMed ID: 28279945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Action of chloroquine on glutathione metabolism in erythrocytes parasitized by Plasmodium berghei].
    Bhatia A; Charet P
    Ann Parasitol Hum Comp; 1984; 59(3):317-20. PubMed ID: 6380377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloroquine: physiological basis of drug resistance in Plasmodium berghei.
    Macomber PB; O'Brien RL; Hahn FE
    Science; 1966 Jun; 152(3727):1374-5. PubMed ID: 5937128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of erythrocyte infected with malaria parasite and the action of antimalarial drugs.
    Grinberg LN; Soprunov FF
    Biomed Biochim Acta; 1983; 42(11-12):S317-21. PubMed ID: 6372794
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of heme polymerase by chloroquine and other quinoline derivatives.
    Chou AC; Fitch CD
    Biochem Biophys Res Commun; 1993 Aug; 195(1):422-7. PubMed ID: 8363618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmodium berghei: glycolytic intermediate concentrations of the infected mouse erythrocyte.
    Sander BJ; Kruckeberg WC
    Exp Parasitol; 1981 Aug; 52(1):1-8. PubMed ID: 7016570
    [No Abstract]   [Full Text] [Related]  

  • 20. The malarial pigment in rat infected erythrocytes and its interaction with chloroquine. A Mössbauer effect study.
    Yayon A; Bauminger ER; Ofer S; Ginsburg H
    J Biol Chem; 1984 Jul; 259(13):8163-7. PubMed ID: 6376502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.