BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6751870)

  • 1. Conserved cysteine and histidine residues in the structures of the tyrosyl and methionyl-tRNA synthetases.
    Barker DG; Winter G
    FEBS Lett; 1982 Aug; 145(2):191-3. PubMed ID: 6751870
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases.
    Blow DM; Bhat TN; Metcalfe A; Risler JL; Brunie S; Zelwer C
    J Mol Biol; 1983 Dec; 171(4):571-6. PubMed ID: 6363712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence comparisons in the aminoacyl-tRNA synthetases with emphasis on regions of likely homology with sequences in the Rossmann fold in the methionyl and tyrosyl enzymes.
    Walker EJ; Jeffrey PD
    Protein Seq Data Anal; 1988 Feb; 1(3):187-93. PubMed ID: 3283733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase.
    Webster T; Tsai H; Kula M; Mackie GA; Schimmel P
    Science; 1984 Dec; 226(4680):1315-7. PubMed ID: 6390679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues.
    Kalogerakos T; Hountondji C; Berne PF; Dukta S; Blanquet S
    Biochimie; 1994; 76(1):33-44. PubMed ID: 8031903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amino acid sequence of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus.
    Winter G; Koch GL; Hartley BS; Barker DG
    Eur J Biochem; 1983 May; 132(2):383-7. PubMed ID: 6840095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and amplified expression of the tyrosyl-tRNA synthetase genes of Bacillus stearothermophilus and Escherichia coli.
    Barker DG
    Eur J Biochem; 1982 Jul; 125(2):357-60. PubMed ID: 6749496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid activation in crystalline tyrosyl-tRNA synthetase from Bacillus stearothermophilus.
    Rubin J; Blow DM
    J Mol Biol; 1981 Jan; 145(3):489-500. PubMed ID: 7265210
    [No Abstract]   [Full Text] [Related]  

  • 9. Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA.
    Hountondji C; Lederer F; Dessen P; Blanquet S
    Biochemistry; 1986 Jan; 25(1):16-21. PubMed ID: 3513822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gram-scale purification of methionyl-tRNA and tyrosyl-tRNA synthetases from Escherichia coli.
    Bruton C; Jakes R; Atkinson T
    Eur J Biochem; 1975 Nov; 59(2):327-33. PubMed ID: 1107028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase.
    Ho CK; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1891-7. PubMed ID: 3518795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General structure/function properties of microbial methionyl-tRNA synthetases.
    Schmitt E; Panvert M; Mechulam Y; Blanquet S
    Eur J Biochem; 1997 Jun; 246(2):539-47. PubMed ID: 9208948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the substrate-binding sites of aminoacyl-tRNA synthetases with the procion dye green HE-4BD.
    McArdell JE; Duffield M; Atkinson T
    Biochem J; 1989 Mar; 258(3):715-21. PubMed ID: 2658972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural variation of tyrosyl-tRNA synthetase and comparison with engineered mutants.
    Jones MD; Lowe DM; Borgford T; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1887-91. PubMed ID: 3011073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the limits of protein-amino acid side chain recognition with the aminoacyl-tRNA synthetases. Discrimination against phenylalanine by tyrosyl-tRNA synthetases.
    Fersht AR; Shindler JS; Tsui WC
    Biochemistry; 1980 Nov; 19(24):5520-4. PubMed ID: 7006687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding.
    Winter G; Fersht AR; Wilkinson AJ; Zoller M; Smith M
    Nature; 1982 Oct; 299(5885):756-8. PubMed ID: 6811955
    [No Abstract]   [Full Text] [Related]  

  • 18. Probing histidine-substrate interactions in tyrosyl-tRNA synthetase using asparagine and glutamine replacements.
    Lowe DM; Fersht AR; Wilkinson AJ; Carter P; Winter G
    Biochemistry; 1985 Sep; 24(19):5106-9. PubMed ID: 4074680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H; Fersht AR
    Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit interactions in the methionyl-tRNA synthetase of Bacillus stearothermophilus.
    Mulvey RS; Fersht AR
    Biochemistry; 1976 Jan; 15(2):243-9. PubMed ID: 1247516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.