These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 6752143)

  • 1. Studies of the flavin adenine dinucleotide binding region in Escherichia coli pyruvate oxidase.
    Mather M; Schopfer LM; Massey V; Gennis RB
    J Biol Chem; 1982 Nov; 257(21):12887-92. PubMed ID: 6752143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of flavin in acetoin production by two bacterial pyruvate oxidases.
    Bertagnolli BL; Hager LP
    Arch Biochem Biophys; 1993 Jan; 300(1):364-71. PubMed ID: 8424670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active site studies of DT-diaphorase employing artificial flavins.
    Tedeschi G; Chen S; Massey V
    J Biol Chem; 1995 Feb; 270(6):2512-6. PubMed ID: 7531691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational studies of Escherichia coli pyruvate oxidase.
    O'Brien TA; Shelton E; Mather M; Gennis RB
    Biochim Biophys Acta; 1982 Aug; 705(3):321-9. PubMed ID: 6751398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of native Escherichia coli pyruvate oxidase from apoenzyme monomers and FAD.
    Recny MA; Hager LP
    J Biol Chem; 1982 Nov; 257(21):12878-86. PubMed ID: 6752142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.
    Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G
    Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes.
    Massey V; Schopfer LM; Nishino T; Nishino T
    J Biol Chem; 1989 Jun; 264(18):10567-73. PubMed ID: 2732238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs.
    Prongay AJ; Williams CH
    J Biol Chem; 1990 Nov; 265(31):18968-75. PubMed ID: 2229055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.
    Risse B; Stempfer G; Rudolph R; Möllering H; Jaenicke R
    Protein Sci; 1992 Dec; 1(12):1699-709. PubMed ID: 1304899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity probing of flavin binding sites. 2. Identification of a reactive cysteine in the flavin domain of Escherichia coli DNA photolyase.
    Raibekas AA; Jorns MS
    Biochemistry; 1994 Oct; 33(42):12656-64. PubMed ID: 7918492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin conformational changes in the catalytic cycle of p-hydroxybenzoate hydroxylase substituted with 6-azido- and 6-aminoflavin adenine dinucleotide.
    Palfey BA; Ballou DP; Massey V
    Biochemistry; 1997 Dec; 36(50):15713-23. PubMed ID: 9398300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic studies of pyruvate oxidase flavoprotein from Escherichia coli trapped in the lipid-activated form by cross-linking.
    Mather MW; Gennis RB
    J Biol Chem; 1985 Sep; 260(19):10395-7. PubMed ID: 3928620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of thiamin diphosphate and FAD in the phosphatedependent pyruvate oxidase from Lactobacillus plantarum.
    Tittmann K; Proske D; Spinka M; Ghisla S; Rudolph R; Hübner G; Kern G
    J Biol Chem; 1998 May; 273(21):12929-34. PubMed ID: 9582325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FAD and substrate analogs as probes for lysine N6-hydroxylase from Escherichia coli EN 222.
    Macheroux P; Plattner HJ; Romaguera A; Diekmann H
    Eur J Biochem; 1993 May; 213(3):995-1002. PubMed ID: 8504838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FAD analogues as prosthetic groups of human glutathione reductase. Properties of the modified enzyme species and comparisons with the active site structure.
    Krauth-Siegel RL; Schirmer RH; Ghisla S
    Eur J Biochem; 1985 Apr; 148(2):335-44. PubMed ID: 3987692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Escherichia coli pyruvate oxidase enhances the oxidation of hydroxyethylthiamin pyrophosphate.
    Bertagnolli BL; Hager LP
    J Biol Chem; 1991 Jun; 266(16):10168-73. PubMed ID: 2037573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein.
    Hassan-Abdallah A; Bruckner RC; Zhao G; Jorns MS
    Biochemistry; 2005 May; 44(17):6452-62. PubMed ID: 15850379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-aspartate oxidase from beef kidney. Purification and properties.
    Negri A; Massey V; Williams CH
    J Biol Chem; 1987 Jul; 262(21):10026-34. PubMed ID: 3611051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic properties of streptococcal NADH oxidase containing artificial flavins.
    Ahmed SA; Claiborne A
    J Biol Chem; 1992 Dec; 267(36):25822-9. PubMed ID: 1464596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.