These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 6753919)
1. Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli. Stone SR; Morrison JF Biochemistry; 1982 Aug; 21(16):3757-65. PubMed ID: 6753919 [TBL] [Abstract][Full Text] [Related]
2. Catalytic mechanism of the dihydrofolate reductase reaction as determined by pH studies. Stone SR; Morrison JF Biochemistry; 1984 Jun; 23(12):2753-8. PubMed ID: 6380573 [TBL] [Abstract][Full Text] [Related]
3. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. Oyen D; Fenwick RB; Stanfield RL; Dyson HJ; Wright PE J Am Chem Soc; 2015 Jul; 137(29):9459-68. PubMed ID: 26147643 [TBL] [Abstract][Full Text] [Related]
4. Dihydrofolate reductase from Escherichia coli: the kinetic mechanism with NADPH and reduced acetylpyridine adenine dinucleotide phosphate as substrates. Stone SR; Morrison JF Biochemistry; 1988 Jul; 27(15):5493-9. PubMed ID: 3052577 [TBL] [Abstract][Full Text] [Related]
5. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle. Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate. Morrison JF; Stone SR Biochemistry; 1988 Jul; 27(15):5499-506. PubMed ID: 3052578 [TBL] [Abstract][Full Text] [Related]
7. Kinetic analysis of the mechanism of Escherichia coli dihydrofolate reductase. Penner MH; Frieden C J Biol Chem; 1987 Nov; 262(33):15908-14. PubMed ID: 3316211 [TBL] [Abstract][Full Text] [Related]
8. The dynamic energy landscape of dihydrofolate reductase catalysis. Boehr DD; McElheny D; Dyson HJ; Wright PE Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882 [TBL] [Abstract][Full Text] [Related]
9. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Boehr DD; McElheny D; Dyson HJ; Wright PE Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1373-8. PubMed ID: 20080605 [TBL] [Abstract][Full Text] [Related]
10. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Sawaya MR; Kraut J Biochemistry; 1997 Jan; 36(3):586-603. PubMed ID: 9012674 [TBL] [Abstract][Full Text] [Related]
11. Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: temporal order and the roles of Asp27 and Tyr100. Liu CT; Francis K; Layfield JP; Huang X; Hammes-Schiffer S; Kohen A; Benkovic SJ Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18231-6. PubMed ID: 25453098 [TBL] [Abstract][Full Text] [Related]
12. Single-molecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate. Zhang Z; Rajagopalan PT; Selzer T; Benkovic SJ; Hammes GG Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2764-9. PubMed ID: 14978269 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Warren MS; Brown KA; Farnum MF; Howell EE; Kraut J Biochemistry; 1991 Nov; 30(46):11092-103. PubMed ID: 1932031 [TBL] [Abstract][Full Text] [Related]
14. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Cameron CE; Benkovic SJ Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309 [TBL] [Abstract][Full Text] [Related]
15. Impact on catalysis of secondary structural manipulation of the alpha C-helix of Escherichia coli dihydrofolate reductase. Li LY; Benkovic SJ Biochemistry; 1991 Feb; 30(6):1470-8. PubMed ID: 1993166 [TBL] [Abstract][Full Text] [Related]
16. Kinetic investigation of the functional role of phenylalanine-31 of recombinant human dihydrofolate reductase. Tsay JT; Appleman JR; Beard WA; Prendergast NJ; Delcamp TJ; Freisheim JH; Blakley RL Biochemistry; 1990 Jul; 29(27):6428-36. PubMed ID: 2207084 [TBL] [Abstract][Full Text] [Related]
17. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization. Li L; Falzone CJ; Wright PE; Benkovic SJ Biochemistry; 1992 Sep; 31(34):7826-33. PubMed ID: 1510968 [TBL] [Abstract][Full Text] [Related]
18. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion. Oyen D; Fenwick RB; Aoto PC; Stanfield RL; Wilson IA; Dyson HJ; Wright PE J Am Chem Soc; 2017 Aug; 139(32):11233-11240. PubMed ID: 28737940 [TBL] [Abstract][Full Text] [Related]
19. Substrate-induced hysteresis in the activity of Escherichia coli dihydrofolate reductase. Penner MH; Frieden C J Biol Chem; 1985 May; 260(9):5366-9. PubMed ID: 3886655 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of substrate, coenzyme, and inhibitor binding to Escherichia coli dihydrofolate reductase. Cayley PJ; Dunn SM; King RW Biochemistry; 1981 Feb; 20(4):874-9. PubMed ID: 7011378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]