These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 6753923)
1. Direct coordination of nucleotide with the intrinsic metal in Escherichia coli RNA polymerase. A nuclear magnetic resonance study with cobalt-substituted enzyme. Chatterji D; Wu FY Biochemistry; 1982 Sep; 21(19):4657-64. PubMed ID: 6753923 [TBL] [Abstract][Full Text] [Related]
2. Nuclear magnetic resonance studies on the role of intrinsic metals in Escherichia coli RNA polymerase. Effect of DNA template on the nucleotide-enzyme interaction. Chatterji D; Wu CW; Wu FY J Biol Chem; 1984 Jan; 259(1):284-9. PubMed ID: 6368537 [TBL] [Abstract][Full Text] [Related]
3. 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Panth H; Brenner MC; Wu FY Arch Biochem Biophys; 1991 Dec; 291(2):307-10. PubMed ID: 1952944 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional differences between the two intrinsic zinc ions of Escherichia coli RNA polymerase. Giedroc DP; Coleman JE Biochemistry; 1986 Aug; 25(17):4969-78. PubMed ID: 3094579 [TBL] [Abstract][Full Text] [Related]
5. Selective substitution in vitro of an intrinsic zinc of Escherichia coli RNA polymerase with various divalent metals. Chatterji D; Wu FY Biochemistry; 1982 Sep; 21(19):4651-6. PubMed ID: 6753922 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R; Mildvan S Biochemistry; 1977 Jan; 16(2):241-9. PubMed ID: 189795 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence resonance energy transfer studies on the proximity relationship between the intrinsic metal ion and substrate binding sites of Escherichia coli RNA polymerase. Wu FY; Tyagi SC J Biol Chem; 1987 Sep; 262(27):13147-54. PubMed ID: 3308870 [TBL] [Abstract][Full Text] [Related]
8. Zinc metalloproteins involved in replication and transcription. Giedroc DP; Keating KM; Martin CT; Williams KR; Coleman JE J Inorg Biochem; 1986; 28(2-3):155-69. PubMed ID: 3543219 [TBL] [Abstract][Full Text] [Related]
9. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Villafranca JJ; Ash DE; Wedler FC Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of various Escherichia coli RNA polymerases containing one or two intrinsic metal ions. Solaiman D; Wu FY Biochemistry; 1985 Sep; 24(19):5077-83. PubMed ID: 3907699 [TBL] [Abstract][Full Text] [Related]
11. Nuclear magnetic resonance studies of substrate interaction with cobalt substituted alcohol dehydrogenase from liver. Sloan DL; Young JM; Mildvan AS Biochemistry; 1975 May; 14(9):1998-2008. PubMed ID: 164901 [TBL] [Abstract][Full Text] [Related]
12. Nuclear magnetic relaxation studies of the conformation of adenosine 5'-triphosphate on pyruvate kinase from rabbit muscle. Sloan DL; Mildvan AS J Biol Chem; 1976 Apr; 251(8):2412-20. PubMed ID: 177414 [TBL] [Abstract][Full Text] [Related]
13. Topographical analysis of regulatory and metal ion binding sites on glutamine synthetase from Escherichia coli: 13C and 31P nuclear magnetic resonance and fluorescence energy transfer study. Villafranca JJ; Rhee SG; Chock PB Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1255-9. PubMed ID: 26053 [TBL] [Abstract][Full Text] [Related]
14. Intrinsic zinc ion is essential for proper conformation of active Escherichia coli RNA polymerase. Solaiman D; Wu FY Biochemistry; 1984 Dec; 23(26):6369-77. PubMed ID: 6397224 [TBL] [Abstract][Full Text] [Related]
15. Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction. SzafraĆski P; Smagowicz WJ; Wierzchowski KL Acta Biochim Pol; 1985; 32(4):329-49. PubMed ID: 3938589 [TBL] [Abstract][Full Text] [Related]
16. Structural characterization of adenine nucleotides bound to Escherichia coli adenylate kinase. 2. 31P and 13C relaxation measurements in the presence of cobalt(II) and manganese(II). Lin Y; Nageswara Rao BD Biochemistry; 2000 Apr; 39(13):3647-55. PubMed ID: 10736163 [TBL] [Abstract][Full Text] [Related]
17. Localization of the binding sites of prokaryotic and eukaryotic RNA polymerases on simian virus 40 DNA. Saragosti S; Croissant O; Yaniv M Eur J Biochem; 1980 May; 106(1):25-31. PubMed ID: 6280998 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance studies of the conformation of enzyme-bound adenylyl(3' leads to 5')uridine and adenosine 5'-triphosphate on RNA polymerase from Esherichia coli. Bean BL; Koren R; Mildvan AS Biochemistry; 1977 Jul; 16(15):3322-33. PubMed ID: 329869 [No Abstract] [Full Text] [Related]
19. Spatial relationship between the intrinsic metal in the beta subunit and cysteine-132 in the sigma subunit of Escherichia coli RNA polymerase: a resonance energy transfer study. Chatterji D; Wu CW; Wu FY Arch Biochem Biophys; 1986 Jan; 244(1):218-25. PubMed ID: 3511843 [TBL] [Abstract][Full Text] [Related]
20. Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation. Sloan DL; Loeb LA; Mildvan AS J Biol Chem; 1975 Dec; 250(23):8913-20. PubMed ID: 1104609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]