These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6755462)

  • 21. Arsenical resistance of growth and phosphate control of antibiotic biosynthesis in Streptomyces.
    Hänel F; Krügel H; Fiedler G
    J Gen Microbiol; 1989 Mar; 135(3):583-91. PubMed ID: 2621441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB.
    Chrysostomou C; Quandt EM; Marshall NM; Stone E; Georgiou G
    ACS Chem Biol; 2015 Mar; 10(3):875-82. PubMed ID: 25517993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.
    Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G
    Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy coupling in the uptake of hexose phosphates by Escherichia coli.
    Essenberg RC; Kornberg HL
    J Biol Chem; 1975 Feb; 250(3):939-45. PubMed ID: 46228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli.
    Rathinasabapathi B; Wu S; Sundaram S; Rivoal J; Srivastava M; Ma LQ
    Plant Mol Biol; 2006 Dec; 62(6):845-57. PubMed ID: 16941209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a triad of arginine residues in the active site of the ArsC arsenate reductase of plasmid R773.
    Shi J; Mukhopadhyay R; Rosen BP
    FEMS Microbiol Lett; 2003 Oct; 227(2):295-301. PubMed ID: 14592722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two systems for the uptake of phosphate in Escherichia coli.
    Rosenberg H; Gerdes RG; Chegwidden K
    J Bacteriol; 1977 Aug; 131(2):505-11. PubMed ID: 328484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation of rifampicin by Escherichia coli and Staphylococcus aureus.
    Williams KJ; Piddock LJ
    J Antimicrob Chemother; 1998 Nov; 42(5):597-603. PubMed ID: 9848443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The association of proton movement with galactose transport into subcellular membrane vesicles of Escherichia coli.
    Horne P; Henderson PJ
    Biochem J; 1983 Mar; 210(3):699-705. PubMed ID: 6307268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics and active site dynamics of Staphylococcus aureus arsenate reductase.
    Messens J; Martins JC; Brosens E; Van Belle K; Jacobs DM; Willem R; Wyns L
    J Biol Inorg Chem; 2002 Jan; 7(1-2):146-56. PubMed ID: 11862551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphate transport in arsenate-resistant mutants of Micrococcus lysodeikticus.
    Alfasi H; Friedberg D; Froedberg I
    J Bacteriol; 1979 Jan; 137(1):69-72. PubMed ID: 762027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular evolution of an arsenate detoxification pathway by DNA shuffling.
    Crameri A; Dawes G; Rodriguez E; Silver S; Stemmer WP
    Nat Biotechnol; 1997 May; 15(5):436-8. PubMed ID: 9131621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efflux-mediated resistance to arsenicals in arsenic-resistant and -hypersensitive Chinese hamster cells.
    Wang Z; Dey S; Rosen BP; Rossman TG
    Toxicol Appl Pharmacol; 1996 Mar; 137(1):112-9. PubMed ID: 8607136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificially induced active transport of amino acid driven by the efflux of a sugar via a heterologous transport system in de-energized Escherichia coli.
    Bentaboulet M; Robin A; Kepes A
    Biochem J; 1979 Jan; 178(1):103-7. PubMed ID: 35159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folic acid-modified mesoporous silica nanoparticles with pH-responsiveness loaded with Amp for an enhanced effect against anti-drug-resistant bacteria by overcoming efflux pump systems.
    Chen X; Liu Y; Lin A; Huang N; Long L; Gang Y; Liu J
    Biomater Sci; 2018 Jun; 6(7):1923-1935. PubMed ID: 29850668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial heavy metal resistance: new surprises.
    Silver S; Phung LT
    Annu Rev Microbiol; 1996; 50():753-89. PubMed ID: 8905098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library.
    Chauhan NS; Ranjan R; Purohit HJ; Kalia VC; Sharma R
    FEMS Microbiol Ecol; 2009 Jan; 67(1):130-9. PubMed ID: 19016868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nicotinic acid transport in Escherichia coli.
    Rowe JJ; Lemmon RD; Tritz GJ
    Microbios; 1985; 44(179-180):169-84. PubMed ID: 2939322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic 109Cd accumulation by cadmium-resistant and -sensitive Staphylococcus aureus.
    Tynecka Z; Skwarek T; Malm A
    FEMS Microbiol Lett; 1990 May; 57(1-2):159-64. PubMed ID: 2143161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rotational asymmetry of Escherichia coli flagellar motor in the presence of arsenate.
    Welch M; Margolin Y; Caplan SR; Eisenbach M
    Biochim Biophys Acta; 1995 Jul; 1268(1):81-7. PubMed ID: 7626666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.