These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6756301)

  • 41. Effect of redox environment on the in vitro and in vivo folding of RTEM-1 beta-lactamase and Escherichia coli alkaline phosphatase.
    Walker KW; Gilbert HF
    J Biol Chem; 1994 Nov; 269(45):28487-93. PubMed ID: 7961790
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Abnormal fractionation of beta-lactamase in Escherichia coli: evidence for an interaction with the inner membrane in the absence of a leader peptide.
    Bowden GA; Baneyx F; Georgiou G
    J Bacteriol; 1992 May; 174(10):3407-10. PubMed ID: 1577708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Length and structural effect of signal peptides derived from Bacillus subtilis alpha-amylase on secretion of Escherichia coli beta-lactamase in B. subtilis cells.
    Ohmura K; Nakamura K; Yamazaki H; Shiroza T; Yamane K; Jigami Y; Tanaka H; Yoda K; Yamasaki M; Tamura G
    Nucleic Acids Res; 1984 Jul; 12(13):5307-19. PubMed ID: 6087281
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Factors determining resistance to beta-lactam combined with beta-lactamase inhibitors in Escherichia coli.
    Reguera JA; Baquero F; Pérez-Díaz JC; Martínez JL
    J Antimicrob Chemother; 1991 May; 27(5):569-75. PubMed ID: 1653204
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prevalence of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and spread of the ST131 clone among extended-spectrum β-lactamase-producing E. coli in Japan.
    Matsumura Y; Yamamoto M; Higuchi T; Komori T; Tsuboi F; Hayashi A; Sugimoto Y; Hotta G; Matsushima A; Nagao M; Takakura S; Ichiyama S
    Int J Antimicrob Agents; 2012 Aug; 40(2):158-62. PubMed ID: 22743014
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effct of cerulenin on sterol biosynthesis in Saccharomyces cerevisiae.
    Greenspan MD; Mackow RC
    Lipids; 1977 Sep; 12(9):729-40. PubMed ID: 333217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of 2,4-dichlorophenol on growth and plasmidic beta-lactamase activity in Escherichia coli.
    Espigares M; Mariscal A
    J Appl Toxicol; 1989 Dec; 9(6):427-31. PubMed ID: 2693513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Bacillus subtilis secretion vector system derived from the B. subtilis alpha-amylase promoter and signal sequence region, and secretion of Escherichia coli beta-lactamase by the vector system.
    Ohmura K; Shiroza T; Nakamura K; Nakayama A; Yamane K; Yoda K; Yamasaki M; Tamura G
    J Biochem; 1984 Jan; 95(1):87-93. PubMed ID: 6323395
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extended spectrum beta-lactamase and metallo beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal.
    Nepal K; Pant ND; Neupane B; Belbase A; Baidhya R; Shrestha RK; Lekhak B; Bhatta DR; Jha B
    Ann Clin Microbiol Antimicrob; 2017 Sep; 16(1):62. PubMed ID: 28927454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates.
    López-Cerero L; Picón E; Morillo C; Hernández JR; Docobo F; Pachón J; Rodríguez-Baño J; Pascual A
    Clin Microbiol Infect; 2010 Feb; 16(2):132-6. PubMed ID: 19614715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Secretion of Escherichia coli beta-lactamase from Bacillus subtilis by the aid of alpha-amylase signal sequence.
    Palva I; Sarvas M; Lehtovaara P; Sibakov M; Kääriäinen L
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5582-6. PubMed ID: 6182566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers.
    Dierikx C; van der Goot J; Fabri T; van Essen-Zandbergen A; Smith H; Mevius D
    J Antimicrob Chemother; 2013 Jan; 68(1):60-7. PubMed ID: 22949623
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic properties of four plasmid-mediated AmpC beta-lactamases.
    Bauvois C; Ibuka AS; Celso A; Alba J; Ishii Y; Frère JM; Galleni M
    Antimicrob Agents Chemother; 2005 Oct; 49(10):4240-6. PubMed ID: 16189104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of cerulenin on growth and lipid metabolism of mycoplasmas.
    Rottem S; Barile MF
    Antimicrob Agents Chemother; 1976 Feb; 9(2):301-7. PubMed ID: 1267428
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of cleavage of Moloney murine leukemia virus gag and env coded precursor polyproteins by cerulenin.
    Ikuta K; Luftig RB
    Virology; 1986 Oct; 154(1):195-206. PubMed ID: 3489314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular characterization of beta-lactamase inclusion bodies produced in Escherichia coli. 1. Composition.
    Valax P; Georgiou G
    Biotechnol Prog; 1993; 9(5):539-47. PubMed ID: 7764166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proceedings: Inhibition of fatty acid biosynthesis with cerulenin and its effects on citrate-Mg-2 transport and macromolecular syntheses in Bacillus subtilis.
    Wille W; Eisenstadt E; Willecke K
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1269. PubMed ID: 4218838
    [No Abstract]   [Full Text] [Related]  

  • 58. Structural insights into bacterial resistance to cerulenin.
    Trajtenberg F; Altabe S; Larrieux N; Ficarra F; de Mendoza D; Buschiazzo A; Schujman GE
    FEBS J; 2014 May; 281(10):2324-38. PubMed ID: 24641521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Precise localization of an overproduced periplasmic protein in Escherichia coli: use of double immuno-gold labelling.
    Bernadac A; Bolla JM; Lazdunski C; Inouye M; Pages JM
    Biol Cell; 1987; 61(3):141-7. PubMed ID: 2965942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Saturated fatty acid-starved cells of Saccharomyces cerevisiae grown in the presence of cerulenin and oleic acid.
    Otoguro K; Awaya J; Tanaka H; Omura S
    J Biochem; 1981 Feb; 89(2):523-9. PubMed ID: 7016849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.