These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6756954)

  • 21. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport.
    Kennedy EP; Scarborough GA
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):225-8. PubMed ID: 5341056
    [No Abstract]   [Full Text] [Related]  

  • 22. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans.
    el Hassouni M; Henrissat B; Chippaux M; Barras F
    J Bacteriol; 1992 Feb; 174(3):765-77. PubMed ID: 1732212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The influence of non-metabolizable alpha- and beta-glycosides on the regulation of sorbose fermentation of salmonellae (author's transl)].
    Stenzel W
    Zentralbl Bakteriol Orig A; 1978 Jun; 240(4):489-96. PubMed ID: 696059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolism of glycosides by Pseudomonas maltophilia.
    Frank SK; Von Riesen VL
    Health Lab Sci; 1978 Jul; 15(3):168-73. PubMed ID: 250499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.
    Harwani D
    Braz J Microbiol; 2014; 45(4):1139-44. PubMed ID: 25763016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. beta-D-Galactoside transport in Escherichia coli. Reversible inhibition by Aprotic Solvents and its Reconstitution in transport-negative membrane vesicles.
    Altendorf K; Müller CR; Sandermann H
    Eur J Biochem; 1977 Mar; 73(2):545-51. PubMed ID: 321223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vinylglycolic acid. An inactivator of the phosphoenolpyruvate-phosphate transferase system in Escherichia coli.
    Walsh CT; Kaback HR
    J Biol Chem; 1973 Aug; 248(15):5456-62. PubMed ID: 4588683
    [No Abstract]   [Full Text] [Related]  

  • 28. Unmasking of an essential thiol during function of the membrane-bound enzyme II of the phosphenolpyruvate beta-glucoside phosphotransferase system of Escherichia coli.
    Haguenauer-Tsapis R; Kepes A
    Biochim Biophys Acta; 1979 Feb; 551(1):157-68. PubMed ID: 371680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides.
    Schaefler S
    J Bacteriol; 1967 Jan; 93(1):254-63. PubMed ID: 5335892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition by 3-deoxy-3-fluoro-D-glucose of the utilization of lactose and other carbon sources by Escherichia coli.
    Miles RJ; Pirt SJ
    J Gen Microbiol; 1973 Jun; 76(2):305-18. PubMed ID: 4579128
    [No Abstract]   [Full Text] [Related]  

  • 31. Fine control of sugar uptake by Escherichia coli.
    Kornberg HL
    Symp Soc Exp Biol; 1973; 27():175-93. PubMed ID: 4588142
    [No Abstract]   [Full Text] [Related]  

  • 32. Galactoside-proton symport in a lacYUN mutant of Escherichia coli investigated by analysis of transport progress curves.
    Page MG
    Biochem J; 1987 Mar; 242(2):539-50. PubMed ID: 3036093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis.
    Chedgy RJ; Köllner TG; Constabel CP
    Phytochemistry; 2015 May; 113():149-59. PubMed ID: 25561400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beta-glucoside permease represses the bgl operon of Escherichia coli by phosphorylation of the antiterminator protein and also interacts with glucose-specific enzyme III, the key element in catabolite control.
    Schnetz K; Rak B
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5074-8. PubMed ID: 2195546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The lactose/H+ carrier of Escherichia coli: lac YUN mutation decreases the rate of active transport and mimics an energy-uncoupled phenotype.
    Wright JK; Seckler R
    Biochem J; 1985 Apr; 227(1):287-97. PubMed ID: 2986605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inducible system for the utilization of beta-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis.
    Schaefler S; Maas WK
    J Bacteriol; 1967 Jan; 93(1):264-72. PubMed ID: 5335893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An evolutionary alternative system for aryl beta-glucosides assimilation in bacteria.
    Faure D; Saier MH; Vanderleyden J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):467-70. PubMed ID: 11361080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the transglycosidation relating to riboflavin by Escherichia coli. I. Formation of riboflavinyl glucoside.
    KATAGIRI H; YAMADA H; IMAI K
    J Vitaminol (Kyoto); 1957 Dec; 3(4):264-73. PubMed ID: 13492352
    [No Abstract]   [Full Text] [Related]  

  • 39. The kinetics of the beta-galactoside-proton symport of Escherichia coli.
    Page MG; West IC
    Biochem J; 1981 Jun; 196(3):721-31. PubMed ID: 6274320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations.
    Görke B; Rak B
    EMBO J; 1999 Jun; 18(12):3370-9. PubMed ID: 10369677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.