These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 675699)

  • 1. Sulfite oxidase activity in liver and kidney tissue in five laboratory animal species.
    Tejnorová I
    Toxicol Appl Pharmacol; 1978 May; 44(2):251-6. PubMed ID: 675699
    [No Abstract]   [Full Text] [Related]  

  • 2. Sulfite oxidase deficiency in man: demonstration of the enzymatic defect.
    Mudd SH; Irreverre F; Laster L
    Science; 1967 Jun; 156(3782):1599-602. PubMed ID: 6025118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of NADPH-linked alpha,beta-ketoalkene double bond reductase from rat liver.
    Kitamura S; Tatsumi K
    Arch Biochem Biophys; 1990 Oct; 282(1):183-7. PubMed ID: 2171428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sulfite on the energy metabolism of mammalian tissues in correlation to sulfite oxidase activity.
    Beck-Speier I; Hinze H; Holzer H
    Biochim Biophys Acta; 1985 Jul; 841(1):81-9. PubMed ID: 4016147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcosine metabolism in the rat.
    Rehberg ML; Gerritsen T
    Arch Biochem Biophys; 1968 Sep; 127(1):661-5. PubMed ID: 4972344
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative sulfite metabolism in the rat, rabbit, and rhesus monkey.
    Gunnison AF; Bresnahan CA; Palmes ED
    Toxicol Appl Pharmacol; 1977 Oct; 42(1):99-109. PubMed ID: 412276
    [No Abstract]   [Full Text] [Related]  

  • 7. Sex-related differences of acetohexamide reductase activities in the liver and kidney of various mammalian species.
    Imamura Y; Honda Y; Ryu A; Murata H; Kojima Y; Otagiri M
    Res Commun Chem Pathol Pharmacol; 1993 Jun; 80(3):371-4. PubMed ID: 8351417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsomal C-nitroso reductase activity.
    Bélanger PM; Grech-Bélanger O
    Biochem Biophys Res Commun; 1978 Jul; 83(1):321-6. PubMed ID: 697820
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of 2,3,7,8-tetrachlorodibenzoy-p-dioxin on the hepatic 7-ethoxyresorufin O-deethylase activity in four rodent species.
    Håkansson H; Johansson L; Manzoor E; Ahlborg UG
    Eur J Pharmacol; 1994 Aug; 270(4):279-84. PubMed ID: 7805776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of cytochrome P-448 activity as exemplified by the O-deethylation of ethoxyresorufin. Effects of dose, sex, tissue and animal species.
    Iwasaki K; Lum PY; Ioannides C; Parke DV
    Biochem Pharmacol; 1986 Nov; 35(21):3879-84. PubMed ID: 3778512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of multiple intraperitoneal sulfite administration on the activity of hepatic sulfite oxidase].
    Teĭnorova I
    Gig Sanit; 1979 Oct; (10):62-4. PubMed ID: 499836
    [No Abstract]   [Full Text] [Related]  

  • 12. Saturation of an alpha, beta-unsaturated ketone: a novel xenobiotic biotransformation in mammals.
    Lindstrom TD; Whitaker GW
    Xenobiotica; 1984 Jul; 14(7):503-8. PubMed ID: 6506762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of the biological function of molybdenum: the relationship between sulfite oxidase and the acute toxicity of bisulfite and SO2.
    Cohen HJ; Drew RT; Johnson JL; Rajagopalan KV
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3655-9. PubMed ID: 4519654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Participation of liver aldehyde oxidase in reductive metabolism of hydroxamic acids to amides.
    Sugihara K; Tatsumi K
    Arch Biochem Biophys; 1986 Jun; 247(2):289-93. PubMed ID: 3717945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolism of 4-substituted-N-ethyl-N-methyl-anilines. II. Some factors influencing alpha-C- and N-oxidation.
    Gorrod JW; Patterson LH
    Xenobiotica; 1983 Sep; 13(9):513-20. PubMed ID: 6659547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The in vitro metabolism of N,N-dimethylaniline by guinea pig and rabbit tissue preparations.
    Gorrod JW; Gooderham NJ
    Eur J Drug Metab Pharmacokinet; 1981; 6(3):195-206. PubMed ID: 7308239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue and species differences in enzymes of epoxide metabolism.
    Pacifici GM; Boobis AR; Brodie MJ; McManus ME; Davies DS
    Xenobiotica; 1981 Feb; 11(2):73-9. PubMed ID: 7233969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacylase-1 isoenzymes: a comparative study.
    Csaikl F; Reimer G; Csaikl U
    Heredity (Edinb); 1986 Apr; 56 ( Pt 2)():157-60. PubMed ID: 3700124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and comparison of sulfite oxidase activity in mammalian tissues.
    Cabré F; Marín C; Cascante M; Canela EI
    Biochem Med Metab Biol; 1990 Apr; 43(2):159-62. PubMed ID: 2346671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N1-methylnicotinamide oxidation in a number of mammals.
    Felsted RL; Chaykin S
    J Biol Chem; 1967 Mar; 242(6):1274-9. PubMed ID: 4225775
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.