BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 6757355)

  • 1. The hepatobiliary axis and lipoprotein metabolism: effects of bile acid sequestrants and ileal bypass surgery.
    Packard CJ; Shepherd J
    J Lipid Res; 1982 Nov; 23(8):1081-98. PubMed ID: 6757355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of bovine plasma cholesterol concentration by partial interruption of enterohepatic circulation of bile salts: a novel hypocholesterolemic model.
    Chen Z; Herdt TH; Liesman JS; Ames NK; Emery RS
    J Lipid Res; 1995 Jul; 36(7):1544-56. PubMed ID: 7595078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bile acid sequestrants: mechanisms of action on bile acid and cholesterol metabolism.
    Einarsson K; Ericsson S; Ewerth S; Reihnér E; Rudling M; Ståhlberg D; Angelin B
    Eur J Clin Pharmacol; 1991; 40 Suppl 1():S53-8. PubMed ID: 2044645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the enterohepatic circulation of bile salts in lipoprotein metabolism.
    Cooper AD
    Gastroenterol Clin North Am; 1999 Mar; 28(1):211-29, viii. PubMed ID: 10198786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic consequences of ileal interruption of the enterohepatic circulation of bile acids.
    van de Peppel IP; Verkade HJ; Jonker JW
    Am J Physiol Gastrointest Liver Physiol; 2020 Nov; 319(5):G619-G625. PubMed ID: 32938201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism.
    Grundy SM; Ahrens EH; Salen G
    J Lab Clin Med; 1971 Jul; 78(1):94-121. PubMed ID: 5569253
    [No Abstract]   [Full Text] [Related]  

  • 7. Apparent selective bile acid malabsorption as a consequence of ileal exclusion: effects on bile acid, cholesterol, and lipoprotein metabolism.
    Akerlund JE; Björkhem I; Angelin B; Liljeqvist L; Einarsson K
    Gut; 1994 Aug; 35(8):1116-20. PubMed ID: 7926917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cholesterol-lowering effect of guar gum is not the result of a simple diversion of bile acids toward fecal excretion.
    Favier ML; Bost PE; Guittard C; Demigné C; Rémésy C
    Lipids; 1997 Sep; 32(9):953-9. PubMed ID: 9307936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. John Caffey Award: lithiasis due to interruption of the enterohepatic circulation of bile salts.
    Kirks DR
    AJR Am J Roentgenol; 1979 Sep; 133(3):383-8. PubMed ID: 111496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hypolipidemic drugs--ileal Na+/bile acid cotransporter inhibitors (S-8921 etc)].
    Ichihashi T
    Nihon Rinsho; 2002 Jan; 60(1):130-6. PubMed ID: 11808323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interruption of the enterohepatic circulation of bile acids stimulates the esterification rate of cholesterol in human liver.
    Ståhlberg D; Reihnér E; Angelin B; Einarsson K
    J Lipid Res; 1991 Sep; 32(9):1409-15. PubMed ID: 1753211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating metabolism of plasma and tissue cholesterol with that of plasma-lipoproteins.
    Sodhi HS; Kudchodkar BJ
    Lancet; 1973 Mar; 1(7802):513-9. PubMed ID: 4119950
    [No Abstract]   [Full Text] [Related]  

  • 13. Lipid metabolism in bile acid malabsorption.
    Färkkilä M; Miettinen TA
    Ann Med; 1990 Feb; 22(1):5-13. PubMed ID: 2184846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactoferrin promotes bile acid metabolism and reduces hepatic cholesterol deposition by inhibiting the farnesoid X receptor (FXR)-mediated enterohepatic axis.
    Ling CJ; Xu JY; Li YH; Tong X; Yang HH; Yang J; Yuan LX; Qin LQ
    Food Funct; 2019 Nov; 10(11):7299-7307. PubMed ID: 31626262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psyllium, not pectin or guar gum, alters lipoprotein and biliary bile acid composition and fecal sterol excretion in the hamster.
    Trautwein EA; Rieckhoff D; Kunath-Rau A; Erbersdobler HF
    Lipids; 1998 Jun; 33(6):573-82. PubMed ID: 9655372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Inhibiting Ileal Apical versus Basolateral Bile Acid Transport on Cholesterol Metabolism and Atherosclerosis in Mice.
    Dawson PA
    Dig Dis; 2015; 33(3):382-7. PubMed ID: 26045273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sterol carrier protein 2 gene transfer changes lipid metabolism and enterohepatic sterol circulation in mice.
    Zanlungo S; Amigo L; Mendoza H; Miquel JF; Vío C; Glick JM; Rodríguez A; Kozarsky K; Quiñones V; Rigotti A; Nervi F
    Gastroenterology; 2000 Dec; 119(6):1708-19. PubMed ID: 11113092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacologic consequences of cholesterol absorption inhibition: alteration in cholesterol metabolism and reduction in plasma cholesterol concentration induced by the synthetic saponin beta-tigogenin cellobioside (CP-88818; tiqueside).
    Harwood HJ; Chandler CE; Pellarin LD; Bangerter FW; Wilkins RW; Long CA; Cosgrove PG; Malinow MR; Marzetta CA; Pettini JL
    J Lipid Res; 1993 Mar; 34(3):377-95. PubMed ID: 8468523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bile acids and lipoprotein metabolism: a renaissance for bile acids in the post-statin era?
    Angelin B; Eriksson M; Rudling M
    Curr Opin Lipidol; 1999 Jun; 10(3):269-74. PubMed ID: 10431663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling plasma lipoprotein-bile lipid relationships: differential impact of psyllium and cholestyramine in hamsters fed a lithogenic diet.
    Trautwein EA; Siddiqui A; Hayes KC
    Metabolism; 1993 Dec; 42(12):1531-40. PubMed ID: 8246766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.