These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6757449)

  • 1. Effect of single amino acid substitutions at the same position on stability of a two-domain protein.
    Yutani K; Ogasahara K; Kimura A; Sugino Y
    J Mol Biol; 1982 Sep; 160(2):387-90. PubMed ID: 6757449
    [No Abstract]   [Full Text] [Related]  

  • 2. Refolding and reactivation of Escherichia coli tryptophan synthase beta2 subunit after inactivation and dissociation in guanidine hydrochloride at acidic pH.
    Groha C; Bartholmes P; Jaenicke R
    Eur J Biochem; 1978 Dec; 92(2):437-41. PubMed ID: 33046
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of denaturation of tryptophan synthase alpha-subunits from Escherichia coli, Salmonella typhimurium, and an interspecies hybrid.
    Yutani K; Sato T; Ogasahara K; Miles EW
    Arch Biochem Biophys; 1984 Mar; 229(2):448-54. PubMed ID: 6367660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of single amino acid substitutions on the thermal stability of the alpha subunit of tryptophan synthase.
    Matthews CR; Crisanti MM; Gepner GL; Velicelebi G; Sturtevant JM
    Biochemistry; 1980 Apr; 19(7):1290-3. PubMed ID: 6992862
    [No Abstract]   [Full Text] [Related]  

  • 5. pH dependence of stability of the wild-type tryptophan synthase alpha-subunit and two mutant proteins (Glu49 replaced by Met or Gln).
    Yutani K; Ogasahara K; Sugino Y
    J Mol Biol; 1980 Dec; 144(4):455-65. PubMed ID: 7019448
    [No Abstract]   [Full Text] [Related]  

  • 6. Correlation of surface properties with conformational stabilities of wild-type and six mutant tryptophan synthase alpha-subunits substituted at the same position.
    Kato A; Yutani K
    Protein Eng; 1988 Jul; 2(2):153-6. PubMed ID: 2907623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible unfolding of the beta 2 subunit of Escherichia coli tryptophan synthetase and its proteolytic fragments.
    Zetina CR; Goldberg ME
    J Mol Biol; 1980 Mar; 137(4):401-14. PubMed ID: 7021849
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of a single amino acid substitution on stability of conformation of a protein.
    Yutani K; Ogasahara K; Sugino Y; Matsushiro A
    Nature; 1977 May; 267(5608):274-5. PubMed ID: 325419
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of conserved proline residues in stabilizing tryptophan synthase alpha subunit: analysis by mutants with alanine or glycine.
    Yutani K; Hayashi S; Sugisaki Y; Ogasahara K
    Proteins; 1991; 9(2):90-8. PubMed ID: 2008436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of amino acid substitutions on conformational stability of a protein.
    Yutani K; Ogasahara K; Sugino Y
    Adv Biophys; 1985; 20():13-29. PubMed ID: 3914832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of early intermediates in the folding of E. coli tryptophan-synthase beta 2 subunit.
    Blond S; Goldberg ME
    Proteins; 1986 Nov; 1(3):247-55. PubMed ID: 3329730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renaturation of guanidine-unfolded tryptophan synthase by multi-mixing stopped-flow dilution in D2O.
    Blond-Elguindi S; Friguet B; Goldberg ME
    FEBS Lett; 1988 Dec; 241(1-2):251-6. PubMed ID: 2848724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of diffusion in the folding of the alpha subunit of tryptophan synthase from Escherichia coli.
    Chrunyk BA; Matthews CR
    Biochemistry; 1990 Feb; 29(8):2149-54. PubMed ID: 2183877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase.
    Axe JM; O'Rourke KF; Kerstetter NE; Yezdimer EM; Chan YM; Chasin A; Boehr DD
    Protein Sci; 2015 Apr; 24(4):484-94. PubMed ID: 25377949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guanidine hydrochloride and acid denaturation of horse, cow, and Candida krusei cytochromes c.
    Knapp JA; Pace CN
    Biochemistry; 1974 Mar; 13(6):1289-94. PubMed ID: 4360785
    [No Abstract]   [Full Text] [Related]  

  • 16. Tryptophan fluorescence study of conformational transitions of the oxidized and reduced form of thioredoxin.
    Holmgren A
    J Biol Chem; 1972 Apr; 247(7):1992-8. PubMed ID: 4552684
    [No Abstract]   [Full Text] [Related]  

  • 17. Globular protein stability: aspects of interest in protein turnover.
    Pace CN; Fisher LM; Cupo JF
    Acta Biol Med Ger; 1981; 40(10-11):1385-92. PubMed ID: 6282021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative activities and stabilities of mutant Escherichia coli tryptophan synthase alpha subunits.
    Lim WK; Shin HJ; Milton DL; Hardman JK
    J Bacteriol; 1991 Mar; 173(6):1886-93. PubMed ID: 2001993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of appearance of an early immunoreactive species during the refolding of acid-denatured Escherichia coli tryptophan synthase beta 2 subunit.
    Murry-Brelier A; Goldberg ME
    Biochemistry; 1988 Oct; 27(20):7633-40. PubMed ID: 2462907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of amino acid substitutions on conformational stability of protein (author's transl)].
    Yutani K
    Tanpakushitsu Kakusan Koso; 1978 Nov; 23(12):1190-8. PubMed ID: 214821
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.