These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6760578)

  • 21. Enzymatic hydroxylations with molecular oxygen.
    Ullrich V
    Angew Chem Int Ed Engl; 1972 Aug; 11(8):701-12. PubMed ID: 4628360
    [No Abstract]   [Full Text] [Related]  

  • 22. Role of cytochrome P-450 isoenzymes in the bioactivation of hydroxy anthraquinones.
    Fratta D; Simi S; Rainaldi G; Gervasi PG
    Anticancer Res; 1994; 14(6B):2597-603. PubMed ID: 7872687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperativity in oxidations catalyzed by cytochrome P450 3A4.
    Ueng YF; Kuwabara T; Chun YJ; Guengerich FP
    Biochemistry; 1997 Jan; 36(2):370-81. PubMed ID: 9003190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Regulation mechanisms of the endoplasmic cytochrome P-450 systems of the liver].
    Ruckpaul K; Rein H; Blanck J
    Biomed Biochim Acta; 1985; 44(3):351-79. PubMed ID: 3890847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic deuterium isotope effects for 7-alkoxycoumarin O-dealkylation reactions catalyzed by human cytochromes P450 and in liver microsomes. Rate-limiting C-H bond breaking in cytochrome P450 1A2 substrate oxidation.
    Kim KH; Isin EM; Yun CH; Kim DH; Guengerich FP
    FEBS J; 2006 May; 273(10):2223-31. PubMed ID: 16649998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Regulation of the catalytic activity of the monooxygenase enzyme system depending of the substrate structure and phospholipid composition of the model membrane].
    Kiselev PA; Garda G; Finch SA; Stir A; Khatyleva SIu; Akhrem AA
    Biokhimiia; 1990 Nov; 55(11):2058-71. PubMed ID: 2085619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Role of cytochrome P-450 in mixed function oxidation and metabolism of anesthetics].
    Shigematsu A; Takahashi S; Furukawa T
    Masui; 1974 Feb; 23(2):89-98. PubMed ID: 4603810
    [No Abstract]   [Full Text] [Related]  

  • 28. Cytochrome P-450 2E1 is not the sole catalyst of chlorzoxazone hydroxylation in rat liver microsomes. off.
    Jayyosi Z; Knoble D; Muc M; Erick J; Thomas PE; Kelley M
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1156-61. PubMed ID: 7791086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Mechanisms of electron transport and hydroxylation with the participation of cytochrome P-450].
    Likhtenshteĭn GI
    Izv Akad Nauk SSSR Biol; 1988; (6):833-43. PubMed ID: 3243937
    [No Abstract]   [Full Text] [Related]  

  • 30. [The behavioral dynamics and catalytic properties of the cytochrome P-450 of liver microsomes in the presence of Mg2+ ions].
    Kiselev PA; Garda G; Finch SA; Stier A; Gurinovich NA
    Dokl Akad Nauk SSSR; 1989; 309(4):984-7. PubMed ID: 2635670
    [No Abstract]   [Full Text] [Related]  

  • 31. Reductive metabolism of halothane by human and rabbit cytochrome P-450. Binding of 1-chloro-2,2,2-trifluoroethyl radical to phospholipids.
    Trudell JR; Bösterling B; Trevor AJ
    Mol Pharmacol; 1982 May; 21(3):710-7. PubMed ID: 7110119
    [No Abstract]   [Full Text] [Related]  

  • 32. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats.
    Jeffery EH; Mannering GJ
    Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational change and activation of cytochrome P450 2B1 induced by salt and phospholipid.
    Yun CH; Ahn T; Guengerich FP
    Arch Biochem Biophys; 1998 Aug; 356(2):229-38. PubMed ID: 9705213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The molecular organization of the liver microsomal monooxygenatic system.
    Ruckpaul K
    Pharmazie; 1978 Jun; 33(6):310-2. PubMed ID: 356060
    [No Abstract]   [Full Text] [Related]  

  • 36. Heteroatom substitution shifts regioselectivity of lauric acid metabolism from omega-hydroxylation to (omega-1)-oxidation.
    Alterman MA; Chaurasia CS; Lu P; Hanzlik RP
    Biochem Biophys Res Commun; 1995 Sep; 214(3):1089-94. PubMed ID: 7575514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CYP2C-catalyzed delta9-tetrahydrocannabinol metabolism: kinetics, pharmacogenetics and interaction with phenytoin.
    Bland TM; Haining RL; Tracy TS; Callery PS
    Biochem Pharmacol; 2005 Oct; 70(7):1096-103. PubMed ID: 16112652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of antidepressant drugs on the activity of cytochrome P-450 measured by caffeine oxidation in rat liver microsomes.
    Danie WA; Syrek M; Ryłko Z; Wójcikowski J
    Pol J Pharmacol; 2001; 53(4):351-7. PubMed ID: 11990081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of phytanic acid omega-hydroxylation in human liver microsomes.
    Komen JC; Duran M; Wanders RJ
    Mol Genet Metab; 2005 Jul; 85(3):190-5. PubMed ID: 15979030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Environmental effect on metabolism of exogenous molecules in liver microsomes].
    Albrecht R; Manchon P
    Ann Nutr Aliment; 1974; 28(4):351-63. PubMed ID: 4157001
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.