BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6760812)

  • 1. Estimates of bacterial growth from changes in uptake rates and biomass.
    Kirchman D; Ducklow H; Mitchell R
    Appl Environ Microbiol; 1982 Dec; 44(6):1296-307. PubMed ID: 6760812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of the [3H]leucine incorporation technique for quantification of bacterial secondary production associated with decaying wetland plant litter.
    Gillies JE; Kuehn KA; Francoeur SN; Neely RK
    Appl Environ Microbiol; 2006 Sep; 72(9):5948-56. PubMed ID: 16957215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making comparable measurements of bacterial respiration and production in the subtropical coastal waters.
    Guo C; Ke Y; Chen B; Zhang S; Liu H
    Mar Life Sci Technol; 2022 Aug; 4(3):414-427. PubMed ID: 37073168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of macrophyte ecological groups on food web components of temperate freshwater lakes.
    Karus K; Zagars M; Agasild H; Tuvikene A; Zingel P; Puncule L; Medne-Peipere M; Feldmann T
    Aquat Bot; 2022 Dec; 183():None. PubMed ID: 36466371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical leucine-to-carbon conversion factors in north-eastern Atlantic waters (50-2000 m) shaped by bacterial community composition and optical signature of DOM.
    Orta-Ponce CP; Rodríguez-Ramos T; Nieto-Cid M; Teira E; Guerrero-Feijóo E; Bode A; Varela MM
    Sci Rep; 2021 Dec; 11(1):24370. PubMed ID: 34934099
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Ezzedine JA; Jacas L; Desdevises Y; Jacquet S
    Front Microbiol; 2020; 11():98. PubMed ID: 32117128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Abundances but High Growth Rates of Coastal Heterotrophic Bacteria in the Red Sea.
    Silva L; Calleja ML; Huete-Stauffer TM; Ivetic S; Ansari MI; Viegas M; Morán XAG
    Front Microbiol; 2018; 9():3244. PubMed ID: 30666244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspecific and interspecific variation in thermotolerance and photoacclimation in
    Díaz-Almeyda EM; Prada C; Ohdera AH; Moran H; Civitello DJ; Iglesias-Prieto R; Carlo TA; LaJeunesse TC; Medina M
    Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29212723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.
    Gonsalves MJ; Fernandes SO; Priya ML; LokaBharathi PA
    Braz J Microbiol; 2017; 48(1):37-42. PubMed ID: 27939850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sample dilution and bacterial community composition influence empirical leucine-to-carbon conversion factors in surface waters of the world's oceans.
    Teira E; Hernando-Morales V; Cornejo-Castillo FM; Alonso-Sáez L; Sarmento H; Valencia-Vila J; Serrano Catalá T; Hernández-Ruiz M; Varela MM; Ferrera I; Gutiérrez Morán XA; Gasol JM
    Appl Environ Microbiol; 2015 Dec; 81(23):8224-32. PubMed ID: 26407885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and activity of bacteria in the headwaters of the Rhode River Estuary, Maryland, USA.
    Rublee PA; Merkel SM; Faust MA; Miklas J
    Microb Ecol; 1984 Sep; 10(3):243-55. PubMed ID: 24221146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial adaptation to low-nutrient conditions as studied with algal extracellular products.
    Bell WH
    Microb Ecol; 1984 Sep; 10(3):217-30. PubMed ID: 24221144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production.
    Wright RT; Coffin RB
    Microb Ecol; 1984 Jun; 10(2):137-49. PubMed ID: 24221094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth characteristics of small and large free-living and attached bacteria in Lake Constance.
    Simon M
    Microb Ecol; 1988 Mar; 15(2):151-63. PubMed ID: 24202998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA.
    Thorn PM; Ventullo RM
    Microb Ecol; 1988 Jul; 16(1):3-16. PubMed ID: 24201529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of radiolabeled tracers in dilution grazing experiments to estimate bacterial growth and loss rates.
    Geider RJ
    Microb Ecol; 1989 Jan; 17(1):77-87. PubMed ID: 24197125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and activity of bacteria in deep granitic groundwaters of southeastern sweden.
    Pedersen K; Ekendahl S
    Microb Ecol; 1990 Dec; 20(1):37-52. PubMed ID: 24193962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterioplankton cell growth and macromolecular synthesis in seawater cultures during the North Atlantic Spring Phytoplankton Bloom, May, 1989.
    Ducklow HW; Kirchman DL; Quinby HL
    Microb Ecol; 1992 Sep; 24(2):125-44. PubMed ID: 24193132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotrophic microbial activity in shallow aquifer sediments of Long Island, New York.
    Kazumi J; Capone DG
    Microb Ecol; 1994 Jul; 28(1):19-37. PubMed ID: 24190392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimates of bacterial growth rate constants from thymidine incorporation and variable conversion factors.
    Chrzanowski TH; Simek K; Sada RH; Williams S
    Microb Ecol; 1993 Mar; 25(2):121-30. PubMed ID: 24189810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.