These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 6761094)

  • 1. [Results of animal experiments following the use of a new material--biocement--for osteoplasty and fixation of alloimplants].
    Raveh J; Stich H; Kehrer B
    Chirurg; 1982 Nov; 53(11):719-31. PubMed ID: 6761094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocement--a new material. Results of its experimental use for osseous repair of skull cap defects with lesions of the dura mater and liquorrhea, reconstruction of the anterior wall of the frontal sinuses and fixation of alloimplants.
    Raveh J; Stich H; Schawalder P; Ruchti C; Cottier H
    Acta Otolaryngol; 1982; 94(3-4):371-84. PubMed ID: 6216717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Osteoplasty and defect bridging on the visceral cranium with a new biocement substance. Animal experiment results].
    Raveh J; Stich H; Ruchti C
    Dtsch Zahnarztl Z; 1982 Jun; 37(6):498-508. PubMed ID: 7049667
    [No Abstract]   [Full Text] [Related]  

  • 4. [Current possibilities of reconstruction of the lower jaw in bony defects following tumor resection. Animal experiments and clinical results].
    Raveh J; Stich H; Sutter F; Greiner R
    Chirurg; 1982 Jul; 53(7):459-67. PubMed ID: 6749451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixation of bone fragments with BIOCEM. First observations on humans.
    Vuillemin T; Raveh J; Stich H; Cottier H
    Arch Otolaryngol Head Neck Surg; 1987 Aug; 113(8):836-40. PubMed ID: 3620144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanically processable bioactive glass ceramics--a new biomaterial for bone replacement. 1].
    Gummel J; Höland W; Naumann K; Vogel W
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(6):338-43. PubMed ID: 6666190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Significance of synthetic calcium phosphate ceramics as a bone replacement material].
    Eitenmüller J
    Orthopade; 1986 Feb; 15(1):30-5. PubMed ID: 3960537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects.
    Boyne PJ
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S146-50. PubMed ID: 11314792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Properties and compatibility of a new biocement after intraosseous implantation in an animal experiment (preliminary results)].
    Raveh J; Stich H; Ruchti C; Schawalder P
    Dtsch Zahnarztl Z; 1981 Oct; 36(10):659-66. PubMed ID: 7032883
    [No Abstract]   [Full Text] [Related]  

  • 10. Reconstruction of large bone defects with calcium phosphate ceramics--an experimental study.
    Patka P; den Otter G; de Groot K; Driessen AA
    Neth J Surg; 1985 Apr; 37(2):38-44. PubMed ID: 4000517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anorganic bovine bone and ceramic analogs of bone mineral as implants to facilitate bone regeneration.
    Spector M
    Clin Plast Surg; 1994 Jul; 21(3):437-44. PubMed ID: 7924142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthos--a bioceramic bone replacement material.
    Ferraro JW; Fetter AW; Mohler LR; McShane M
    Surg Forum; 1977; 28():537. PubMed ID: 617529
    [No Abstract]   [Full Text] [Related]  

  • 13. Composite fixation of segmental bone/joint defect replacement (SDR) prostheses. Biological and biomechanical justifications.
    Chao EY; Sim FH
    Chir Organi Mov; 1990; 75(1 Suppl):171-3. PubMed ID: 2249522
    [No Abstract]   [Full Text] [Related]  

  • 14. Guided bone regeneration with the combined use of resorbable membranes and autogenous drilling dust or xenografts for the treatment of dehiscence-type defects around implants: an experimental study in dogs.
    Lee SH; Yoon HJ; Park MK; Kim YS
    Int J Oral Maxillofac Implants; 2008; 23(6):1089-94. PubMed ID: 19216278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histomorphometric evaluation of a nanothickness bioceramic deposition on endosseous implants: a study in dogs.
    Coelho PG; Cardaropoli G; Suzuki M; Lemons JE
    Clin Implant Dent Relat Res; 2009 Dec; 11(4):292-302. PubMed ID: 18783412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental implantation of porous materials into bone. Proplast for low modulus fixation of prostheses.
    Rhinelander FW; Nelson CL
    Acta Orthop Belg; 1974; 40(5-6):771-98. PubMed ID: 4620054
    [No Abstract]   [Full Text] [Related]  

  • 17. Scintigraphic studies to evaluate stability of ceramics (hydroxyapatite) in bone replacement.
    Patka P; Den Hollander W; Den Otter G; Heidendal AK; De Groot K
    J Nucl Med; 1985 Mar; 26(3):263-71. PubMed ID: 3156222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of variables influencing implant fixation by direct bone apposition.
    Thomas KA; Cook SD
    J Biomed Mater Res; 1985 Oct; 19(8):875-901. PubMed ID: 3880349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning and transmission electron microscopy, and electron probe analysis of the interface between implants and host bone. Osseo-coalescence versus osseo-integration.
    Daculsi G; LeGeros RZ; Deudon C
    Scanning Microsc; 1990 Jun; 4(2):309-14. PubMed ID: 2402606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of calvarial defects by bioresorbable ceramics: an experimental study in rats.
    Schliephake H; Redecker K; Kage T
    Mund Kiefer Gesichtschir; 1997 Mar; 1(2):115-20. PubMed ID: 9384790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.